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"Introduction

A SPACE MISSION is no more successful than its telemetry. For it is

only through the telemetry received from the vehicle that we are able to

determine how it is performing, what the engineering and scientific

measurements are yielding, and, with the possible exception of large

satellites in near-earth orbits, whether the vehicle is even there or not.

Wireless telemetry has been a reality for about 70 years now, and has

been used extensively for 40 or 50 years. In that time radio, television,

and radar techniques have been developed to extremely high levels of
performance. Commercial radio and television has become a way Of

life; commercial aviation depends upon radio and radar, and even

amateurs operate their own radio transmitters. Why, then, should there

be any problems associated with telemetry in the space age? It would

seem that all the efforts should be devoted to the less-tried engineering

pursuits, such as rocket design. Telemetry, albeit important, is well
understood.

A little reflection, however, suggests a number of significant differences

between space telemetry and surface telemetry. The most striking of

these lies in the distances involved. Clearly, until recently, no attempt
was ever made to transmit information more than about 12 000 miles,

since no two points on earth are separated by more than that distance.

(Even communication at distances of more than a few thousand miles

depended upon rather unpredictable meteorological phenomena and could

not be relied upon.) Yet the nearest neighbor to the earth is about 20 times

farther away than that and the planet nearest to the earth more than

2000 times as distant. Since the power at the receiver is inversely

proportional to the square of the distance between it and the transmitter,

the power received from a transmitter on Venus would be only one

four-millionth as great as the power received from the same transmitter

placed on the opposite side of the earth.

The second major difference between space telemetry and surface

telemetry rests in the constraints placed on the transmitter and receiver

in the space vehicle. In contrast to commercial radio and television, in

which the transmitter can be large and complex whereas the receivers

must be kept small and inexpensive, the transmitter in the spacecraft-to-

ground telemetry link is limited by weight and reliability constraints,

while the receiver, on the ground, is relatively unconstrained. It is

clearly not possible, or at least not practical, to include, as part of a
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viii INTRODUCTION

spacecraft, a 50 000-watt transmitter complete with a steam turbine to.

generate the power and an 80-foot antenna to transmit it. The equip-

ment must be kept as small and as reliable as possible and must be fully

automatic; the power required can be no more than that supplied by the

generators and batteries on board which, in turn, must be kept within
reasonable weight limitations. Thus, in practice, the transmitted power

is limited to a few watts.

The receiver, however, may reasonably involve large antennas, a crew

of operators, and even a digital computer. The ground-to-vehicle link is
more conventional in its constraints, although the reliability demands

and the operating conditions to which the receiver is subject are, of

course, considerably more severe than in the usual situation.

Granting, then, that space telemetry does, indeed, pose new and
unique problems, what are the means which have been adopted for a

solution? They, in general, fall into one of two categories: (1) improved

components, and (2) improved data handling and modulation systems.
The discussion of these techniques is the purpose of these notes. We

begin by reviewing some mathematical techniques and introducing some

fundamental concepts in chapter 1. In chapter 2 we investigate some
of the methods whereby the effective signal power at the receiver can be

vastly increased through improved component design. We then discuss,
in some detail in chapter 3, the somewhat conventional modulation

techniques and proceed to investigate the more recent pulse-modulation

schemes in chapter 4. Having observed some definite advantages
inherent in pulse modulation, we then discuss in chapter 5 the data-

handling efficiencies possible when working with pulsed, or sampled,
data. Chapter 6 is concerned with the related problems of ranging and,

briefly, telemetry synchronization. And, finally, chapter 7 discusses the

telemetry systems which ]mve actually been used in the Pioneer and

Mariner programs and some of the recent innovations used in the earth-

based receiving equipment.



CHAPTER I

Fundamentals

IN ORDER TO DISCUSS, in any detail, the essentials of modern communica-

tions techniques it is necessary first to define some terms and to review

some mathematical concepts. It is hoped that this chapter will help to
clarify some of those concepts such as bandwidth and noise so fundamental

to the theory of telecommunications.

FOURIER SERIES AND FOURIER TRANSFORMS

Let f(t) be a function periodic in time with a period T such that

f(t) =f(t+nT)n=O, -4-1, =1=2,... and with the property that

T/2

r lf(t)l.,dt<_.

Then, subject to some rather general conditions, f(t) can be expressed as a
Fourier series:"

f(t) =aoq-2T_T.,..__ (a, cos _.tTb. sin w.t). (1.1)

where o_.=2rn/T. Thus f(t) may be considered to be a weighted sum of

sinusoids of frequencies f.=oJ./27r=n/T. The Fourier coefficient a0

may be evaluated by integrating both sides of equation (1.1) over one
period

f _T I2

r1(t) dt=ao (1.2)

Similarly an and b. can be evaluated by multiplying both sides of equation

(1.1) by cos oJ.t and sin _.t, respectively, and integrating the product
over one period:

f T/2 t

a.=J_TJ(t) cos _.t dt

[ T/2

b,= J_rJ(t) sin _.t dt

(1.3)
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While we have equated the function f(t) to its Fourier series, it should be.

noted that this equality is valid only at the points of continuity of f(t).
Several alternative forms of the Fourier series will be useful. Since

and

, ei_-t+e -i_-t
COS O_nl, --

2

sin w,d -ei'°"t-e-i'_"t
2j

where j = %/-----1, f(t) may be written

ao+l _] . . , 1
f(t)--_ T.__ ._,(a.--gb.)e_'_. -_ _ (a.Tjb.)e-i_,. '

=T n__** Cn ei'_'$

(1.4)

Here c_,--c,*, the asterisk designating "the complex conjugate of,"

c,=a,-jb,,, and c0=a0. The last series is referred to as the Fourier

exponential series. It is readily verified that

f T/2

c.-- J- 21r/f(t)e-""' dt (1.5)

Finally, noting that

where

and

a. cos w.tq-b, sin o_.t = d. cos (_.tq-4_.)

d. = (a.2+b.2) in

_. = -tan -_ b./a.

it is possible to write f(t) as a series of cosines only:

f(t) =2 _-_ d. cos (o_.t q-ch.)
n--O

(1.6)

Consider now a function f(t) with a period that is actually infinite.
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Then letting ho_= _.+_--_. = 2r/T and taking the limit of equation (1.4)
as T-,co and n--* co 'n such a way that o_,,= (2rn/T)---_oo, we find that

where

f(t): lim _._,c.ei'_.tZxo_=l f =,.r .... 27rj_=F(j_)e_t d_ (1.7)

_' T/2

F(jo_) = lim c,= lira ] f(t)e -_t dt
.,T_.o n,T_,o _,--T/2
wn._o Wn-_.o

(1.8)

=f_:/(t)e-io,dt

The functions f(t) and F(joo) as defined above are called Fourier transform

pairs, F(joo) being the representation in the frequency domain of the time

function f(t). Analogously with the Fourier series, the Fourier trans-
form F(jo_) of f(t) is defined if

In addition, again subject to certain generally satisfied conditions on

f(t), the relationship

l=F(j )ei.'
21rJ -=

holds at all points of continuity.

• ei" f(u)e -j'_" du do_
-oo J --_o

As an example, consider the function illustrated in figure 1.1. The

Fourier series expansion of the periodic function f(t) is easily determined:

¢(t)

--T--I

-r/; r/2

FIGURE 1.1 --A periodic function.

_t



where

TELECOMMUNICATIONS

A f r/2 .c_= e-_t dt
J -T/2

= 2A sin _o_r/2
_n

(1.9)

Letting T--_ oo we find that the Fourier transform of a single pulse of

amplitude A and width r is just

F(jco) = lim c, = Ar sin _r/______3
T... o_,'/2

(1.1o)

THE DIRAC DELTA FUNCTION

Consider, now, the Fourier transform of the rectangular pulse of the

previous section as r--*0 and A--_ ¢o in such a way that Ar = 1. The pulse

becomes an infinitely narrow pulse but with a constant area equal to one.
Its Fourier transform becomes

F(jo_) = 1

The significance of the Fourier transform of this limiting pulse, which we

shall call a delta function $(t), is highly suspect, since $(t) is totally

uninteresting except when t =0. But because _(t) is discontinuous at this

point, equation (1.7) is not necessarily satisfied there.

Nevertheless, the delta function has great utilitarian value, and it will

be convenient to consider _(t) and 1 as Fourier transform pairs. Those

who are bothered by this may substitute a pulse of some infinitesimally

small but nonzero time duration and of a large but finite amplitude

whenever the function 6(t) occurs in subsequent equations. The results

will still be meaningful and true with an arbitrarily small error in most of

the manipulations which follow. It will be useful, in fact, in some of the

arguments, to consider just such a pulse with width hr and amplitude

1/hr. We shall label such a pulse $_T(t).
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An interesting property of the delta function is evidenced when it

• is integrated. First of all, recall that

f a,n A'B >-2f_:'a,(t) dt= J_a,a'_,(t) dt= l

and that consequently

f At/2

f_:,,,(,)o(oa,=j_,,=,,,(oo(,)a,
f Avis

- o(o) dt=g(o)

where the error in replacing g(t), where --Ar/2<=t<Ar/2, by g(O), of

course, goes to zero as At--*0 and aa,(t)---*$(t). Thus

and

f_]o(t)a(t) =g(O)dt

f to+B

o-a o(tD(t-to) dt=o(to)

A,B>O

A,B>O

(1 11"_

since a(t--to) is zero except when t-t0=0 or t=to. The Fourier trans-

form, by the way, of $(t-to) is clearly e -_'_.

By analogy, a delta function can be defined in the frequency domain,

a(o-o0). The corresponding time function then is evidently f(t)

= (1/2_)ei_0 t. By using delta functions, it is now possible to define the

transform of a periodic function (although in this case

t)l dt = co).

Since for a periodic function

f(t) = .__.Tei"t

then F(jw)= t)e -m dt

.... ,,dt

"* Cn

= ._._ 2,_a(,,- _o.)
(1.12)
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While in this instance the interpretation of a delta function as a limiting

pulse is not meaningful, the term a(o_-o_.) can be regarded as a formalism

whereby a discrete function {cn} may be writen as a continuous function,

F(j_).

LINEAR SYSTEMS

Consider the system illustrated in figure 1.2. The time function

y(t)

F

z(t)

FIGURE 1.2--A linear system.

y(t) is designated as the input and z(t) as the output. The network or

filter F converts the function y(t) to the function z(t). It is assumed to be

linear; that is, if yl(t) produces the output zl(t) and y2(t) produces the

output z2(t), then the input ayl(t)_-by2(t) produces the output azl(t)

q-bz2(t). From this definition it follows that when the input is

the output of F is

a(r,)Ar,y(t--br,)
i,,,o

n

a(r,)Ar,z(tq-r,)
i,.,o

and, hence, passing to the limit as 5r_=r_-r___ approaches zero while

n---* ¢o and rl--_r, r.--*T the input

produces the output

y' (t) = f ra (r) y (t-F r) dr

z'(t) = a(r)z(t-_-r) dr

Let us define h(t) as the output of the filter F at time t when the input is

a delta function at time t = 0. Then suppose the input is

ya(t) = _ y(r,)hraa.(t-r,) (1.13)

where r,=iAr. Such an input is depicted in figure 1.3.
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yA(t)

FIGURE 1.3--Example of an input of the form (1.13).

Because of the assumed linearity of the filter, the output is simply

y(iSr)ha,(t--ihr)ar (1.14)

where ha_(t--ihr) is the response of the filter to a pulse of width hr and

amplitude 1/At occurring at time t=ihr. Again, taking the limit as

Ar--*O and i--* _ in such a way that ihr--*r, the input becomes

f'_ y(r)_(t- r) dr = y(t) (1.15)

while the output may be written

z(t)= f_: y(r)h(t-r) dr= f_: y(t-y)h(_)d_ (1.16)

Thus, the response of the filter to an arbitrary input y(t) can be obtained

in terms of the impulse response h(t).

There are two practical conditions commonly placed on h(t). The

first of these is that the filter F should not be expected to produce an

output before it receives an input; that is, h(t)=0 when t<0. This

is the condition that F be a realizable filter. We shall not be particularly

concerned with realizability here, however. The second condition is that

the filter be stable; that is, if the input y(t) is bounded, ly(t)l <.4 for all t,
then the output must also be bounded. Thus, using equation (1.16)

f f; /:iz(t)l = _. y(t--y)h(,) d, <_ [y(t-,)llh(,) I d_ <A [h(_) I d, (1.17)
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and if the integral of the absolute value of h(t) is finite, z(t) must be,

bounded and the filter F is stable. Suppose now that

Then, by choosing the input

y(to-,_) = { 1 h(,_)>__0
-1 h(_)<0

we have demonstrated a bounded input which produces an unbounded

output, for

d_=f_:l_(,), a,=° (1.18)

Thus, if the filter is stable h(t) is absolutely integrable. Consequently,

IH(j_)I-- ]f__h(t) e-_t dtl<- f__[h(t)[ dt < "

and the Fourier transform H(j_) of h(t) exists.

Assuming now that h(t), y(t), and z(t) have Fourier transforms and

transforming both sides of equation (1.16), we obtain

f_: ff ffz(t)e-i_' dt= y(t--_)h(_)e-i'_(_-_)e-i'_ d_ dt

Interchanging the order of integration and defining

Y(j,,,)=f_:y(t-,7)e-_'*('-,) dt=f_:y(u)e-_'*"du

and

z(j,o) = f__ z(t)e-i_, dt

we have

Z(j_) = Y (fio)H (fio) (1.19)

The transform H(j_) of the impulse response h(t) is referred to as the

transfer function of the filter F.
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Note that if y(t) is periodic, we have from equation (1.4) that

Y(Jw) = _® T 2_$(_- to.)

and that, consequently

f_: Z(jto)e i'' dto= __. Tf_: H dto

= _ T H (Jto .)e i''' (1.2o)

This result can be made more meaningful, perhaps, by considering the

response to the input

y(t) = 2.., -- e'_"'
n.-w T

Since F is linear, and since the input is periodic, the output must also
be periodic so that

z(t)=£ c-_ e i_.t

Thus, defining H(jto.)e i-.t to be the response of the filter to a "sinusoid"

e i'-t of unit amplitude, c.' = c.H(jo_.) yields the desired result. That this

definition of H(jto) is consistent with its previous one as the transform of

the impulse response clearly follows because the "transform" of e i'-t is

2r_(to-o_.). Then, from equation (1.19), when y(t)=e/_-t

and
Z (jto) = 2_rH (jto) _ (to-- to.)

z(t) = fH (jto)$(to-- to.)e i_t dto = H (jto.)e i_.'

POWER AND ENERGY SPECTRA

Let y(t) be a periodic function

y(t)= ei.., to.- T

The average power in y(t) is defined as

1 f Tn

P_..=_j_ray_(t) dt

(1.21)

(1.22)
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(If y(t) is a voltage level, for example, Pave represents the average power

dissipated by passing y(t) through a 1-ohm resistor). Substituting

equation (1.21) into (1.22), we obtain

ei(2T/T) ( n+m)t dt

........ T T TJ-ra

Clearly, the integral on the left vanishes except when m= -n, in which

case it is just T.

Thus
2

where use is made of the fact that c_,,=c,*.

Suppose now we pass y(t) through a filter with the property that only

the ruth component is passed; that is

H(jo_,)=fl n=-4-m (see footnote 1)

l0 Otherwise

The output of the filter is then

z(t) = T H(J_°')ei_"+_ -_ H(--jo_,,,)e -i'_"

= [_ ei',,,']-F- [_ e;"-,'] *

where Re(X) designates the real part of X.

the frequency ¢o_ is thus

(1.24)

The average power at

cos 2 (1.25)
TJ-r/2 (_o,.t+O,.) dt = 2

l Note that [H(j_)b = IH(-fi0)] for any filter with an impulse response which is a real
function of time:

H(j_,)f f _ h(t) cos o_tdt-j f _ h(t) sin _t dt

= A (co) -jB(¢o)

where A(o_) and B(w) are both real functions of _. Then since H(-j_)=A(_)

+jB(_)=H*(j_), the statement follows.
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For the ease m=0, it is easily verified that the average power is
" Ico/TI_. After rewriting equation (1.23)

P.v,= _ +2 k c"_ (1.26)
1'

it is clear that the average power in the function ](t) is just the sum

of the average powers in each of its Fourier components.
Consider the case now in which y(t) is not periodic but has a Fourier

transform Y(j_). Then

and

y(t) = Y(j_)e i_' d_ (1.27)

P,v, = lim -_ y'(t) dt (1.28)
T_,o J --T

But if y(t) has a bounded amplitude, ly(t)[<_.A,

and unless this last integral is finite, Y(j¢) need not exist. Generally,

then Pave=0 for functions which have Fourier transforms. It is, never-

theless, interesting to consider the energy E_ in the function y(t):

f_[ y'(t) dt (1.29)

Substituting equation (1.27) into this expression and changing the

order of integration yields

E_ = (2v)nj__ j_._ Y (j¢ol) Y(j¢o_) -_ ei(_,+,_,)t dt dto_ d_

-2_rJ_., J__ Y (j_o_) Y (j_o2)$(_o_+ ¢2) d_ down

(t.ao)
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Let us, as we did in the case of the periodic function, pass y(t) through
a filter with a response

H(j,,,) =.

A¢o Aw

1 o_o-_- <_o < o_o+-_-

1 --_o---_- <_ < --_o+

0 Otherwise

(1.31)

Then Z(j_)= Y(j_)H(j_) and

f_: lff. = z'(t) dt = _ [Y(j_)H(j_)I2 d_
oO

- ([Y(jo_o)[2WIy(--jwo)]2}_ (1.32)

where Ao_ is assumed to be small enough so that Y(joJ) - Y(jwo) over the

intervals in question. Since IY(jo_)] = ]Y(-jo_)l and letting Af= Ao_/27r,
we have

,, E.(_o)
,(_o) -- _ = 2] Yfj_o)l 2 (1.33)

Thus, equations (1.23) and (1.30) do not only indicate the average

power and energy in the functions being investigated, but also indicate

the power and energy levels at the various frequency components.

For this reason the function defined in equation (1.33) is referred to as the

energy spectral density of the function y(t). Similarly, using delta func-

tions, it is possible to write a power spectral density P(o_) for a periodic
function y(t) as follows:

Then

•o Cn 2

c..---.T26(o_)q_47r___T _(¢o--_.) (1.34)P(_)

CO C n

The energy and power spectral densities of equations (1.33) and

(1.34) are called single-sided spectral densities since they are both defined

only for positive frequencies (both - o_and o_contributions were combined

in one expression) and correspond to the actual power or energy that
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would be measured at that frequency. The corresponding

spectral densities are defined in the obvious way as

_(_) = IY (j_)12 (1.35)
and

P(_) = £2, T"_(_-_) (1.36)

Note that single- and two-sided densities differ by a factor of 2 except, in

the periodic case, at zero frequency.

two-sided

SPECTRA AND AUTOCORRELATION

Thus far we have considered two kinds of processes: those characterized

by periodic functions of time and those characterized by transient func-

tions of time (i.e., those which have Fourier transforms and consequently

must decay in time). From the communications point of view, both

types of processes are uninteresting; both are deterministic and hence

completely predictable. Information is transmitted only when the re-

ceiver does not know exactly what to expect from the _nder. So far as

the receiver is concerned, the signal is a randvm process. An important

characterization of a random process y(t) and the one that will be most

useful to us here is that afforded by the probability density function

p(y,). This density function has the property that the probability that

a<yt_b, where yt is the value of y(t) at a particular instant of time t is

determined from the integral

Pr{a<y,<b}_ _ = p(Yt) dyt

For the kinds of signals with which we shall be concerned, P(yt) will not be

a function of the time t. In fact, the random processes y(t) which we will
encounter in these notes will fall into an even more restricted class called

stationary random processes which, among other things, have this property

that p(y,) is not a function of time.

Presumably the average value of the absolute amplitude of a stationary

process y(t)is not zero. Accordingly, /_[y(t)l dr=random and the

/_"Fourier transform of y(t) does not necessarily exist. (If [y(t)] dt

were finite, the average value of ly(t)l would be zero, and since the distri-
bution of y(t) does not change with time, y(t) must necessarily be every-

where zero.) To gain insight into the relationship between the random

function y(t) and its power spectrum, it is useful to digress and consider

the spectrum of periodic and transient functions from another point of
view.



14 TELECOMMUNICATIONS

Let y(t) be a periodic function.

Then

e '_n' (1.37)

Define the autocorrelation function _(r) of y(t) as

1 f Tn
_b_(r) =TJ-rr2 y(t)y(t+r) dt

(1.38)

Note that since y(t) is periodic, y(t)=y(t+mT), where m=l, 2, . ..,

_(r) is periodic with the same period, for

1 f T/2

+_(r+mT) = TJ-r/_

_ 1 f T/2
_J-_

y(t)y(t+r+mT) dt

y(t)y(t+r) dt =4_(r)

Intuitively, 0r(r) is a measure of how much y(t) changes in r seconds.

Note, in particular, that

_(0) >l_b_(r) t for r_nT, n=O, +l, 4-2, . . . (1.39)

unless y(t) is a constant, because if y(t)_constant and rr_nT, then

f TI20 < [y(t) :t:y(t-t-r) ]_dt
3 --r/2

 _fT/2 dt+fT/2y2(t) y2(t+r) dt+2 f rn y(t)y(t+r) dt
j --TI2 J --T/2 J --T/2

But

and, hence

f r/2 dt f rny2(t) = y2(t+r) dt = T4,_(O)
3 --TI2 3 --T/2

2T[_b(0) =h_(r)] > 0 r_nT

from which the above statement follows. Thus, unless it is a constant

function, y(t) "looks" more like itself than any time shift of itself,

substantiating the intuitive interpretation just mentioned. Note, too,
that

1 [ rn
4J_(-- r) =-TJ_T/_ y(t)y(t-- r) dt

1 [ (r/2)-,
= TJ(-r/_)-, y(u+r)y(u) du
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. and because y(t) is periodic with period T

1[ r/2
_h_(- r) = TJ-r_ y(u-br)y(u) du = 4J_(r)

and _b_(r) is an even function of r.

Now, since _b_(r) is periodic with period T, it can be expanded in a
Fourier series:

1£ 27rn (1.40)_by(r) = _(o_n)e i_*" o_,= T

where _(_.) are the Fourier coefficients of Cy(r):

f T/2

• _(oJ,) = J-r/2 ¢_(r)e-i_n_ dr (1.41)

Substituting from equation (1.38)

_ l fr/' fr/ 
_( _") - -TJ-T/2 J--T/2 y( t)y( t-l-r)e-i_" dt dr

1 f r/_. f r/2

- TJ-Tz2 Y(t)ei_"J-r/2 Y(t-Fr)e-J"'('+') dr dt (1.42)

Because y(t) and e _'_-t are both periodic with period T

fr/2 / (r/,)+,y(t-}-r)e -i_.(t+') dr-- y(u)e -_*" du
J--T/2 .] (--T/2)+r

f T]2= y(u)e -_ du=cn
,] --T]2

and

_cn f TM 1 2
¢_(_) --TJ-r_ Y(t)ei_t dt = _]c_] (1.43)

Consequently, the coefficients of the Fourier expansion of the auto-

correlation function _b_(r) are just the terms of the power spectrum

of y(t):

(1.44)
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Now consider a transient function

_
y(t) = y(j_)ei_ t d__ (1.45)

® 2w

and define the autocorrelation function

¢hu(r)= f_: y(t)y(t-l-r) dt (1.46)

(Note that this definition is different from that in the periodic case

in that it is not normalized by the period, which in this case is infinite.
The definition of the autocorrelation function for random functions

will again be normalized. The definition

1 /" T
lim-- / y(t)y(tWr) dt
r_® 2TJ-r

is not used in this case because this integral is in general identically zero
for transient functions.)

Substituting equation (1.45) into the defining expression for _u(r)
yields the result that

 LLL_(r) = Y(j_,) Y(j_)ei(_,+_,),ei_,, d_l d_ dt

Af'f- (2,_2j_. j_.. Y(j_I) Y(.i_2)ei" . ei(-,+-,)* dt d_l d_

l f-f-

-fit _ ]Y(J_)]' ei_'d_ (1.47)

Thus _,(r) and _(_) = IY(j_o)l 2=,(_) form Fourier transform pairs. (The

reader may verify that _u(r) is an even function of r and that

_bv(0)) [_bu(r)] , y(t) _ constant, in this case too.)

For both transient functions and periodic functions then, it is seen

that the Fourier transform of the autocorrelation function O_(r) is

related to the spectral density of the time function y(t). It, therefore,

should not be surprising that the same relationship holds for random

functions. The Weiner-Khintchine theorem states, in fact, that if

y(t) is a random process and if the autocorrelation function is defined

4_v(r) ------lim 1 f r y(t)y(tTr) dt (1.48)
r.. 2TJ-r
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• then its Fourier transform

¢,(r) = f_: _y(r)e -i_" dr (1.49)

is the power spectral density of the process y(t). The proof of this

theorem is somewhat involved and is not attempted in this

report. However, the importance of the theorem should be immediately

apparent. As argued, the random process f(t) will not generally have a

Fourier transform. Yet random processes are most useful in characteriz-

ing the signals involved in a communication system. The autocorrelation

functions of these random processes can often be determined directly from

the mathematical description of the system under investigation. Because

of this and because of the Wiener-Khintchine relationship, among other

things, the autocorrelation function is a powerful analytical tool. While

it is beyond the scope of this report to investigate autocorrelation func-

tions in general, two extremely important cases, which will prove to be

useful in later analyses, are considered.

The first is the situation in which the power spectral density is constant,

independent of _o; _,(_)--N0/2. (This spectrum is called white since,

analogous with the color white, it contains all frequencies.)

Then

and

1/._,(r) = ¢,(_)e i_" d_
o0

NO f oo J'_". NO ./ \

-7--1 e a_=--a--o_r)
'i_r d -_ ,_

_Y(r) = lim l f r y(t)y(t'4-r) dt= (Ocor...2TJ-r

Thus, if the spectral density of the process y(t) is constant for all fre-

quencies, the autocorrelation function of y(t) is identically zero for all

values of r_0; y(t) and y(t+r) are said to be uncorrelated. Physically,

this means that y(t)seems to have no relationship to the value of y(t+r).

Note, however, that since ¢,(_)= No/2

Consequently, no physical process can have a white spectrum. Never-

theless, white processes are convenient fictions and, in fact, are extremely

good approximations to the very common situation in which the spectral
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density is constant over a bandwidth much greater than the bandwidth of

the system under investigation. Suppose that a white process with the

spectral density N0/2 were passed through a system which could be rep-

resented by a transfer function

H(flo) ={10 [o_]<27rWOtherwise

Then the average power at the output of this system due to the noise would
be

Nof_rw

P_° = 4_ J-_-12,wdW = NoW

a finite quantity even though the input power were supposedly infinite.

The fact that the input spectrum is constant only out to a frequency of

say 10W does not alter the fact that so far as the system is concerned,

it is effectively white. In the time domain, the autocorrelation function
of an "almost" white process after being passed through the system with

the transfer function H(jo_) defined previously is given by

N f 2.w
¢hu(r)___j_2,w . dW .. sin2_Wre'"" _; =._0w _._

Cy0-) _NoW

 ,J1 1 J1
2W 2W W

FIGURE 1.4--The (sln x)/x functloe.

and is graphically illustrated ill figure 1.4. Thus Ou(r), instead of being a

delta function of amplitude No/2, is essentially of pulse width 1/2W and

amplitude (No/2)2W, for some large but finite value of W.

The second situation which we will find useful to investigate is that in

which the function y(t) is of the form shown in figure 1.5.
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TO 2T0 3T 0 4T 0 t-_

I I

FIGURE 1.5--A random pulse train.

The function y(t) can assume only the values A and -A. Each pulse

lasts exactly To seconds, at the end of which time y(t) may remain as it

was or switch to the other amplitude, with each alternative occurring on

an average of exactly one-half the time. Clearly

To determine

_(0) =lim _ [ r y2(t) dr= A 2

ife,(T0) =lim y(t)y(t+ To) dt
T_ _ T

observe that y(t) and y(t+To) are independent for any value of t, with

both functions assuming the values A and --A equally often. Thus

y(t)y(t+ To) =

A.A =A 2

A.(-A) = --A 2

-A.(A) = --A 2

(-A)(--A) =A 2

1_ of the time

_/4 of the time

1/_ of the time

1/_ of the time

and the average value of this product is zero. Thus ¢hy(To)=O.

Similarly ¢_(nT0)=0, n=+l, 4-2, ±3, . . . . Now consider _b_(r),
0 <r < To. This situation is most easily explained by referring to figure

1.6.

We see that the ith pulse is multiplied by itself for (To-r)/To percent

of the time and by the i+lst pulse r/To percent of the time. Thus

To- r r

--(1-- _0)A2 O<r<To
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y(t)

y(t+#

A

-A

A"

-A-

To 2To

I

' I112
ro-_ 2To-_

I

L_

3_
I

!'1
3T 0 -r 4T 0 -r

I L_

,°°°

4 To t-.,.

°°°o t_

=0

By symmetry then

FIGURE 1.6--A random pulse train and its translation in time.

Clearly, the same argument establishes that

ch_(r) = (1- _o)¢_(n To) -F _oCh_[(n"l-1) To]

(n=l, 2, )nTo<r< (n+ l)To

(1_]rigA ,

ch_(r)= \ To/

0
Thus

Ir[ < To

Otherwise

¢_(_) =/__b_(r)e-i_ dr

--A'f_°(1-_e-i.,d,+A,f ° (lq_r_e-,.,dr
Jo \ _/ J-_o_, _1

= A2To sin 2 o:7"o/2
(_To/2) 2

The spectral density is illustrated in figure 1.7.

sin x

" x 1

FIGURE 1.7--The function (sln_ x)/x :_.
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• The spectral density decreases rapidly with oa. In fact, about 90 percent

of the power is included within the frequency interval I¢o1< 2f/To.

Clearly, then, passing this signal through a filter with the transfer

function

Otherwise

would alter it only slightly for k on the order of 3 or 4.

BANDWIDTH

The bandwidth of a signal is a measure of the width of the spectrum

of the signal in cycles per second (o0rad/sec = _0/2r cps =f cps). The band-

width of the signal just discussed is infinite, since the power spectral

density goes to zero only ......... :^_11_. _J_,, oa. _,,s Is truc ...... mosti_SylllpbUUuall_v ...:4-k rr_,; " ,,r;÷l_

common signals. It is, therefore, useful to define an effective band-

width Bee_ such that, were the spectrum constant with the value _u(0)

out-to some point _0--2_B.., the average power would be the same

as in the actual signal. That is

P._ = f _"e"_AO)_ = 2B_.¢u(O) = f_: ¢A'_) d'_
,] --2rBeff

(1.5o)

For the signal just discussed, it follows that Paw=A2=2B,ftA2To and

hence that Beff= 1/2T0. Thus, the more pulses that occur each second,

the greater is the signal bandwidth.

This inverse relationship between how rapidly a signal can change

and its effective bandwidth can be illustrated intuitively as follows:

The rapidity with which a signal changes is measured by its autocorrela-

tion function. If _bu(r)_-_bu(0) then the signal looks much the same at

time t+r as it did at time t. If on the other hand Cu(r)_-0 then y(t)

and y(t+r) are quite different. (We are assuming here that the

average value of y(t) is zero.) Thus, the smaller the value of r necessary

before _u(r)_0, the more rapidly the signal is changing. As a measure

of this rapidity of change let us define the time width r0 analogously

with the definition of effective bandwidth so that

r0_(0) = f_[ _u(r)dr (1.51)
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But, observe that

ro_u(0) = _bu(T) dr=e_u(0)= 1 do_

and hence that

1

B._r = _ro (1.52)

In particular, in the case of an "almost" white process, it was observed

that Cy(0) = NoW and hence that

1ro = N------_-# ¢_(r) dr=-- 2W

Clearly, the effective bandwidth is equal to the actual bandwidth for a

process with a flat spectral density.

EXPECTATION AND INDEPENDENCE

Another useful concept in connection with a random process is its

time average. The time average <y(t)> of a process y(t) is defined as

Thus

and

lfTlim _ y(t) dt
T_,* d --T

< y(t)y(t+r) > = the(r)

< y_(t) > = P,v.

(1.53)

The cross-correlation _bvl_(r ) between two functions yl(t) and y2(t) can

be conveniently defined using the notation for time average

¢v_v2(r) = <y_(t)y2(t+r) > (1.54)

In general, the random functions with which we shall be concerned

will have zero time average

<y(t) > =0

If not, then <y(t)> =C for some constant C, and we can define a new



• FUNDAMENTALS 23

.random process y'(t)=y(t)-C which does have a zero average. Two

random functions yl(t) and y_(t) are said to be linearly independent if

! !< Yl (t)y_ (t) > -- < [yl(t) -- C1][y2(t) - C2]_ -- 0

where C_= <y_(t)> and C:= <y2(t)>.

Now, consider the quantity <y(t)f(t)> where y(t) is a stationary

random process and f(t) is a periodic function with period To. Then,

formally,

<y(t)f(t)>=lim-_ r

But

y(t)f(t) dt

1 fT.= _.®lim(2N + 1) To

N

f(t) _ y(t+iTo) dt
i---N

1 ro/At-_f(i+l)At N

=lim _ ]i f(t) Z y(t+iTo) dtN_®(2N+ 1)T0 at ,--N

=limlim (2N+I)T0 _ f(jAt) y(t+iTo) dt
At_o ._'_ y...o i---N JiAt

1 N r(i+1)At

aim (2N..t_i)At,__N _t y(n-4-iTo) du= <y(t)>

since y(t) is stationary and the infinite sum represents an average over
an infinite time interval of the function y(t). Therefore,

1 TO/At-I
<y(t)y(t) > = <y(t) > lim _- _ f(jAt)ht

At-..o-tO i.=_

1 f r°f(t) dt (1.55)
= <_y(t)_>To Jo

when y(t) is a stationary random process and f(t) is periodic. When

f(t) is periodic with period To, g(t)--f(t)f(t+r)=f(t+To)f(t+r+To)

=g(t+To) and g(t) is also periodic with period To. Thus it follows that

if f(t) is periodic with period To

< f(t)f(t-4-r)y(t)y(t-4-r) >

= <g(t)x(t) > = <x(t) > °f(t)f(t+r) dt (1.56)

where y(t) and hence x(t)=y(t)y(t+r) represent stationary random

processes.
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Another useful concept is that of expectation. Let x(t) represent a

stationary random process with the probability density function p(xt).

Then E[f(xt)], the expectation of f(xt), is defined as

E[f(xt)]= f__ f(x,)p(xt) dxt (1.57)

If, for example f(x) = x, we have

f ooE(xt) = xtp(xt) dxt

Note the similarity between this and the definition of <x(t)>

<x(t) > =lim I f Vx(t) dt
r_. TJ-r

To illustrate this similarity, suppose x(t) can assume only the values
A and B. Then

1(
<x(t) > =lim_A.amount of time in 2T seconds that x(t)= A

q-B.amount of time in 2T seconds that x(f)= B_
]

=A. (percentage of time x(t)= A)

But

+B. (percentage of time x(t)= B)

E(xt) = xtp(xt) axt=A _ p(xt) dxt4-B _ p(x,) dxt
d A--{ d B--c

=A Prob (xt=A)+B Prob (xt=B)

If x(t) assumes the values A with probability p, then, on the average it will

presumably be equal to A for p percent of the time. Indeed, the fraction
of time a function assumes a certain value call be used as the definition of

the probability of that value. Hence, intuitively

and, more generally

E(xt) = <x(t) > (1.5S)

E[f(xt)] = <f[x(t)] > (1.59)

While these relationships are not true for all random processes (e.g., the)"

certainly do not hold for nonstationary processes since E(x,) is a function
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of time while <x(t) > is not), they are true for the class of random pro-
"cesses which we shall have occasion to consider here. Thus we shall use the

operators < > and E( ) interchangeably, referring to both as "the

expectation of" or "the average of." Note, in particular, that when

x(t) is a random process and f(t) a deterministic process

<x(0 +f(0 > = <z(0 > + <f(t) >

-- E(x,) + <f(t) >
(1.60)

and, from equation (1.55)

<z(t)f(t) > = <x(O > <f(O >

= E(x,) <f(t) >
(1.61)

NOISE

Were it not for noise, space communication would be relatively simple.

The receiver antenna would be followcd by an amplifier or amplifiers with

enough gain to render the signal useful. While the receiver might be

somewhat costly for very small signals, no signal would be too small and
no transmitter would be too weak or too far removed for effective com-

munication. Unfortunately, unpredictable random phenomena other

than the signal are always present in any receiver. This noise is amplified

by the same factor as the signal, and, while the voltage level may be

amplified to more practical ranges, the signal is just as noisy, relatively, as

it was before amplification. It is therefore the signal-to-noise ratio that is

crucial and not the signal or noise amplitude alone. Noise must be

counteracted by means other than amplification. In order to understand
methods by which the effect of noise can be diminished, it is necessary to

consider for a moment the properties of the noise itself.

Any electronic system generates some random voltage or current

fluctuations. A metalic resistor, for example, contains electrons which

drift randomly from molecule to molecule. When this resistor is con-

nected into a circuit, the electron drift will produce a random current

through the resistor and hence a voltage across its terminals. Such noise

is called Johnson or thermal noise. The voltage generated across the

terminals of an element is dependent upon the load into which it is

operating. It is, however, convenient to be able to have a quantitative

measure of noise power produced by a resistor which is independent of

the circuit of which it forms a part. For this reason, the noise power

produced by a resistor will be identified here with the amount of noise it

generates in a matched load; i.e., a load whose resistance is identical to

that of the resistor itself. Therefore, let the random (matched) noise
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voltage be v(t) volts at time t. Then the voltage autocorrelation function
is

1 f T
_b_(r) = lim-- / v(t)v(t+r) dt

r_® 2TJ-r

and the power spectral density is

¢_(_) =/__ _(r)e -i_" dr

It has been determined both experimentally and theoretically that for
thermal noise

kT
(I), (_) -- _- (1.62)

where k is the Boltzmann constant, k= 1.38× 10-2s joule/°K, and T is

the absolute temperature of the resistor in degrees Kelvin. While

¢,(_) is not constant for all values of _ (this, as we have seen, would

indicate infinite power), the spectral density is flat out to extremely high

frequencies, on the order of l0 _s cps, where quantum effects occur.

Another commonly encountered noise source in an electronics system

is the so-called shot noise. This is noise produced in vacuum tubes.

Many millions of electrons are emitted randomly from the cathode of an

electron tube each second. The average emission rate determines the

average current. Nonetheless, because of the discrete properties of an

electron, this current is not continuous, but rather is composed of many

electron pulses. Thus, the instantaneous current fluctuates about this

average. Since this fluctuation is random and is not produced by any

input signal variations, it acts as noise. Shot noise may be accounted for

by an equivalent noise source producing a noise power spectral density

of ½kTo watts, where k is the Boltzmann constant and To is the effective

noise temperature of the tube. This spectral density is flat out to fre-

quencies on the order of the reciprocal of the time necessary for an electron

to pass from the cathode to the anode. Although this frequency varies

from tube to tube_ it is typically on the order 109 cps.

Solid-state devices, including transistors, also exhibit noise due to

random electron fluctuations. Again this may be accounted for by

including, in the circuitry of the transistor, an effective noise generator

with a power spectral density of ½kTt, where k is again the Boltzmann

constant, and Tt the effective noise temperature of the device. (Note

that the effective noise temperature is not necessarily the actual temper-

ature of the device in question.) The range of frequencies for which this
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_pectral density remains constant is generally somewhat less than that

for vacuum tubes. However, it is usually safe to assume that the spec-

trum is fiat over the frequency range for which the device is useful.

In short, any electronic device generates noise, the spectral density of

which is directly proportional to the product of its effective temperature

(or to the temperature of one of its elements), and the Boltzmann con-

stant k. Any electronic system contains many of these independent

noise generators. Assuming the system is linear, all of these noise

sources can be replaced theoretically by one noise generator at the input

to the device which produces at the output a noise power equivalent to

that that is actually generated by the combined action of the separate

sources. The total (single-sided) noise spectral density theoretically

needed at the input to account for the observed output is often written

No=kTeff where Te, is designated the effective noise temperature of the

system in degrees Kelvin. Since the input signal and the effective input

noise are equally amplified by the system, the signal-to-noise ratio re-

mains the same at the output as at the input. Thus, knowing the effec-

tive temperature of the system, it is only necessary to determine the

input power in order to specify the outpu_ signal-to-noise ratio.

GAUSSIAN STATISTICS

While no attempt is made in this report to develop a background in

probability theory, it is necessary to introduce a few rather fundamental

concepts. As mentioned earlier, a random process can be partially

characterized by the probability density of its amplitude. Thus,

associated with a stationary random process, y(t) is a density function

p(yt) with the property that, at any instant of time t, the amplitude of

yt falls within the limits a_-<yt_-<b with the probability

b
Pr(a<yt<b)= p(yt) dyt

That is, if y(t) is sampled at a large number of times ti, it will be found

that about lO0>(Pr{a<=yt<=b} percent of the samples will be bounded
by a and b in amplitude. It will be observed that

- oo}Pr{ o_ <y,< --f_.op(y,)dy,=l

since yt must have some amplitude.

Probability densities, of course, can take o11 an infinite number of

functional forms. However, a powerful theorem, known as the Central

Limit Theorem, states the following extremely useful result: Let xi be a
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random variable with the density function p(x_).

these (independent) variables
N

ZN=ZX¢

Consider a sum of.

Subject to some quite general restrictions on the density function p(x,),

the random variable z,v is distributed, asymptotically as N--, _, according

to the density function

1 z_-_ (1.63)
p(x)- _/_- e-'_ x=--

The term _, called the mean of z_r, is the expected value of ZN and a s,

designated the variance of ZN, is the expected value of (ZN--_) 2. A
variable z_ with this density function is called a random variable of

Gaussian or normal distribution. The function p(x) is illustrated in

figure 1.8(a) and its integral, the cumulative Gaussian distribution function

1 Z

2a' .] = v ,,.j_®exp\--2/dx=-P(X)
(1.64)

where X = (Z-z)/(r, is plotted in figure 1.8(b). Note that P(- _)=0,

P(0) = ½, and P(¢o)= 1. A convenient function used in later chapters

is the error function, defined as

Hence

and

1 x [ x"_, 2 fx x 2
erf (X)---_-_Tf_xeXp_--_)ax=-_j ° exp(--_)dx

= 2[P(X) -- P(0)] (1.65)

P(X) =½ [eft (X)+I]

X 2

Pr(x>X)=-_--_x'exp(--2)dx

= ½[1- erf (X)] (1.66)

It was stated in the previous section that electronic noise is caused by

the aggregate of a large number of random phenomena. Vast numbers
of electrons are involved in producing any electronic current. While the

distribution of the emission times, for example, of electrons from the

cathode of a vacuum tube may not be known, one would suspect that

the distribution of the amount of current produced by the electrons,

since it is an effect of the combination of a large number of these random

events, would be Gaussian. This is indeed true for all of the noise
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FIGURE 1.8--The Gausslan probability functions. (a) The Gausslan probability density function p (x);

(b) the cumulative Guassian distribution function P(X).
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sources described in the last section. In fact, a considerably stronger

statement can be made concerning these random noise phenomena: they

may be characterized as Gaussian random processes. If a random proc-

ess is Gaussian, not only is its amplitude distribution at any time instant t

Gaussian, but, in addition, certain relationships between the random

variables xt, x_, . .., etc., must hold for all values of tl, t2, • • • • Since

we cannot go into more detail here concerning random processes, the

interested reader is referred to the literature (see, for example, the

bibliography for this chapter). The property of a stationary Gaussian

process x(t) that will be of most use to us in these notes is that, in addition

to xt being a Gaussian distribution, any integral

f t b

z= ] a(t)x(t) dt (1.67)
J ta

of the process x(t), where a(t) is a deterministic function of time, has also a

Gaussian distribution with the mean

ftb ftb
m=E(z)-- a(t)E(xt) dt=E(xt) a(t) dt (1.68)

a a

and variance

= E(z 2) - 2mE (z) +m _

= E (z_)- _

f'bf'b= a(t)a(u)E[x(t)x(u)] dt du-m _
J t a *It a

(1.69)

(Note from the definition of the operator E that E(ax) = aE(x) where a

is a constant, and E(x Wy) = E(x) + E(y).)

The noise produces a random variation about the signal portion of the

total output. The average value of the noise itself is usually zero. The

variance of the noise is the average value of the noise squared (when its

mean is zero). Thus

If r
_r_=lim _ n2(t) dt=¢.(0)= <n2(t) > =E(n, 2)

r_,, J --T

(1.70)
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• Note, too, that since the noise we have described is effectively white

<n(t)n(u) > = <=n(t)n[t-C (u-- t)] > = O.(u--t)

_ do_ No f _ +'_,-t) dw No ....= +"(_) ei=(=-t)_-=-2-/_e'-_ v- ' _-_=-_o_u-r) (1.71)
ao

These results prove to be quite useful in subsequent chapters.



CHAPTER 2

Amplifiers and Antennas

AS WE OBSERVED in the previous chapter, noise is an unavoidable part

of any communication system. In space telemetry systems this noise

is essentially additive, white, and Gaussianly distributed. Since, as

we argued earlier, it is the ratio of the signal to the noise power that

determines the performance of any communication system, the same

result may be accomplished by either increasing the signal power at

the receiver, or decreasing the noise power. In this chapter ways for

accomplishing both of these tasks are discussed.

The greatest noise contribution in most space telemetry situations

arises in the initial stages of the receiver. Since the transmitter operates
at relatively high signal levels, the signal-to-noise ratio at the transmitter

can be kept very large. Background radiation at the frequencies

generally used is relatively insignificant (and, in any event, unavoidable).

At the receiver, however, the signal power is extremely low so that any

noise contributed in the initial process of amplifying this signal may
bc, in comparison, most significant. It is at this stage that the greatest

effort is demanded to decrease the additive noise, and it is here that the

most spectacular progress has been made.

LOW-NOISE AMPLIFIERS

Signal amplification is most commonly achieved with vacuum tube

and transistor amplifiers, but because such amplifiers are relatively

noisy and, at any rate, not practical at the frequency ranges used for

space communication, we shall not be concerned with them here. The

earliest technique for the low-noise amplification of micro_vave frequencies

involved the use of the traveling-wave tube. The traveling-wave tube

developed during World War II relies upon the interaction between an

electron beam and the signal-bearing electromagnetic wave. This

electromagnetic wave is effectively slowed down to the velocity of the

electron beam by passing it through a waveguide, generally in the

shape of a helix. Since electromagnetic energy traverses linearly along

a waveguide at nearly the velocity of light c, its rate of progress along

the axis of the helix is approximately (l/L)c, where l is the length of the

axis of the helix, and L is the length of the waveguide comprising the

33
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helix. Thus, it is possible to make the velocities of linear propagation

of the signal and the electron beam equal. When this is done, there is
an interaction between the electric field of the signal and the electrons

in the beam. The electrons' densities are increased or decreased,

depending upon the intensity and direction of the field. This "bunch-

ing," in turn, causes the field to be intensified in proportion to its original

strength, thus producing amplification. Extremely large amplifications
over a wide band of microwave frequencies are, indeed, possible with

this technique. The noise arises, as usual, because the electrons do

not all have the same energy or velocity. Thus the bunching cannot

be perfect. Since the electrons are not all moving with the same velocity,

they exhibit a countertendency toward a random distribution. This

appears as noise at the output. Much effort has been made to decrease
the noise inherent in traveling-wave tubes, and amplifiers using these

tubes have been built with effective noise temperatures of less than

300 ° K.

Another more recent development in low-noise, broadband microwave

amplifiers is the paramelric amplifier. The action of this device is
commonly compared to the method by which a child, sitting in a swing,

is able to increase the amplitude of his swinging arc. At the height

of his displacement, when the swing changes directions, the child pulls

back on the ropes, thereby slightly increasing his height, and hence

his potential energy. At the bottom of the arc, the tension on the ropes
is relaxed so that this potential energy is entirely converted into kinetic

energy. Because the maximum height was increased, this kinetic
energy is greater than it would have been, and at the next peak the

potential energy has increased over its value at the previous peak.

The energy of the child, therefore, is converted into oscillation energy

of the swing.
hi the same way any oscillator or resonant device can gain energy

by being "pumped" at the right times. In fact, it can be shown that

the oscillator exhibits a net energy gain even if it is pumped at the

"wrong" time; that is, even if the pumping frequency and the swinging

frequency are not in a one-to-one relationship.

This, then, is the principle of the parametric amplifier. An oscillator

or resonator generally possesses two means of energy storage. If the

storage capacity of one of these devices (or parameters) is altered (as

the child changes the effective length of the ropes of the swing) at a

frequency high compared with its natural frequency, the resonator will
exhibit a net increase of energy. This increase can be sizable.

One realization of the parametric amplification principle is obtained

through the use of solid-state devices which have the property that

their energy storage capacity varies in inverse proportion to the intensity

of the applied signal. This applied, or pumping, signal is chosen to
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have perhaps 10 times as great a frequency as the signal to be amplified.

The latter signal, when used as in input to the resonant circuit containing

the pumped element, is thereby amplified. Noise in such a device

arises primarily from the dissipative elements in the storage devices

and the associated circuitry. These effects can be kept to a minimum,

however, by cooling the amplifier, with liquid helium, for example, to

a few degrees Kelvin. It is possible, in this way, to get effective noise

temperatures of 100 ° K or less for parametric amplifiers.

Another implementation of the parametric principle is the electron-

beam parametric amplifier. Here, an electron beam is used as the
energy storage device and is pumped by an electric field. The per-

formance of this device is approximately that of the more conventional

parametric amplifier.
Probably the most successful low-noise amplifier yet developed,

however, is the maser (acronym for microwave amplification by stimulated

emission of radiation). The electrons in the crystal lattice of any ma-

terial, like all electrons, spin about some axis. The orientation of the

spin axes is restricted to certain positions, and normally the vast majority
of the electrons is in the lowest energy position. If the difference in

energy between the lowest two energy levels is AE, an amount of energy
AE is absorbed by the crystal when an electron makes a transition

from the lowest to the next lowest level, and an amount of energy AE

is radiated when the reverse transition occurs. Normally, transitions

occur equally often in each direction so that the net radiated energy is

zero. The frequency of this radiation, we know from Planck's equation,

must be

f-_ (2.1)

where h=6.6X10 -34 joule-seconds. If the crystal is radiated with

energy at the frequency AE/h, electrons are caused to make the transition

to the higher level and energy is absorbed. By irradiation with energy

at a higher frequency f', it is possible to excite the electrons to a still

higher energy level AE'= hf'. By the proper selection of a crystal, it

is possible to achieve a situation in which electrons, excited to the level

AE', can decay to the level AE, but cannot decay further, to the ground

level except in the presence of external radiation at the frequency

f=5E/h. It is thus possible to create a situation in which the majority
of electrons are at the next to the lowest energy level. When this is

the case, a signal at the frequency f when applied to the crystal exhibits

a net increase in energy due to the preponderance of electron transitions

to the ground level which it triggers. Thus, energy is transferred from

the higher excitation frequency to the crystal, and from the crystal to the

lower signal frequency. Again, the resulting amplification can be sizable.
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The noise generated in a maser amplifier can be exceedingly small.

It is due to fluctuations in the radiation field in the neighborhood of

the crystal. These fluctuations can be caused by thermal agitation

of the electrons causing a noise spectral density Nth=kT where T is

the actual temperature (in degrees Kelvin) of the crystal. In addition,

however, radiation is emitted due to spontaneous electron transitions

which, according to quantum mechanics, give rise to noise with a spectral
density N_= (1�2)hr. For microwave frequencies the total noise No

=Nth.-i-Nq can be quite small, and masers have been built with an effec-

tive noise temperature of less than l0 ° K. Note, however, that the Nq
term is independent of temperature and hence cannot be reduced by

cooling the crystal. This term, being proportional to frequency, be-

comes more significant at higher frequencies. At frequencies in the

visible light range, for example (masers which operate at frequencies

approximating those of visible light are called lasers, the m of microwave

becoming the l of light), the effective noise temperature increases to

about 20 000 ° to 30 000 ° K, thus seriously counteracting some of the

real advantages associated with the use of lasers in space communications.

ANTENNA GAIN

Another method for mitigating the severe conditions encountered

in space communications due to the vastly increased distances between

the transmitter and receiver is through the use of high gain antennas.

The gain of an antenna is defined as the ratio of the maximum power

intensity _,, (the amount of power incident upon a unit area) in any

direction to the average intensity _ .... Usually, the gain G. is expressed
in decibels:

O=lO log,o ( q_" _ (2.2)
k¢,v_/

Since we are interested in communication from a point to a point rather

than from a point to many points, as in commercial radio, we clearly

want a somewhat different antenna design than that commonly used in

the latter case. In conventional radio transmission, it is desired to

radiate equally in all horizontal directions. To accomplish this, vertical

or "dipole" antennas are used with heights which are, ideally, half of

the wavelength of the frequency radiated. Since they radiate hori-

zontally, with little energy being transmitted vertically, they exhibit

gains which are greater than 1; in the case of an ideal dipole antenna,
the gain in the equatorial plane is 2.15 dB.

For space communication, however, it is desired to radiate energy

only between the one transmitter and the one receiver. (There may be

more than one receiver ill practice but, at deep space distances, the
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earth itself is effectively one point.) It is therefore necessary to be

• able to direct the radiated energy in a narrow beam toward the receiver.

This is most effectively accomplished by focusing the energy by means

of a reflector in the shape of a paraboloid. A parabola, it will be re-

called, has the geometric property illustrated in figure 2.1 and hence,

to the extent that the angle of incidence of a microwave beam is equal

to the angle of reflection, all energy originating at the focal point and

striking the antenna will be reflected in a direction parallel to the axis
of the antenna A-A'.

q_l

¢1

A I

FIGURE 2.1--Direction of reflection from a parabolic antenna.

Unfortunately, however, the wavefront will" not remain constant

with a diameter equal to that of the antenna, but will increase in area.

For an intuitive understanding of the reason for this spread, consider the

illustration in figure 2.2.

C

FIGURE 2.2--1nterferonce due to reflections from different parts of the antenna.
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The observer at point C "sees" energy reflected from various portions
of the surface of the antenna. Consider two infinitesimal signal surface

areas A and B. Since C is closer to A than to B, the energy from B

must travel farther before it reaches the point C. If the geometry

is such that the distance BC is exactly one-half wavelength further

than the distance A C, than the radiation from the two points A and B

will arrive at C exactly 180 ° out of phase with respect to each other.

The electromagnetic fields will have equal amplitudes but opposite

signs and will, therefore, completely cancel each other. When C is

too close to the axis, there will be no two points on the surface of the
antenna such that the difference in their distance to C is as great as

one-half wavelength. As the distance from C to the axis increases, the

points A and B satisfying the property described above will move closer
together and, in addition, other points A' and B' can be found on the

surface of the antenna such that the distances A'C and B'C differ by

exactly three-halfs wavelength. Thus, as C moves away from the

axis there is more and more cancellation, so that the net amount of

energy striking C rapidly diminishes. To determine theoretically the

width of the beam at a distance D from the antenna, consider the diagram

in figure 2.3.

C

A r

FIGURE 2.3--Determination of the beamwldth.

We want to find, as a measure of the beamwidth, the smallest value

of r, the distance from C to the axis, such that there is total cancellation

of energy arriving from at least two points on the antenna. Clearly,

the first two points on the antenna surface which provide such cancella-

tion are those two points in the same plane as C, and separated by the

maximum distance. Therefore, let A be at one extreme of the antenna

and B at the other, separated from A by a distance d, the diameter of

the antenna. Assuming that D and r are large compared with the

dimensions of the antenna, and that k is small compared with d, it is
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,easy to determine the value of r in terms of the wavelength, the antenna
diameter, and the distance D. First we find the point B' on the line

CB such that the distances CA and CB' are equal. Since D is large,

_bl' is nearly a right angle and hence _1'-_1. Clearly, ¢2'=¢_ and,

hence, the triangles BC'C and AB'B are (nearly) similar. Thus

AB' BC'

BB' CC'

and since AB'=[d2--(X_/4)]m_.d, BB'=A/2 (in order that we get the

desired cancellation), BC'=D, and CC'=r+(d/2)_r, we have

D_
r_-_ (2.3)

and the beamwidth is proportional to Dh/d.

Now consider the amount of power received by a second parabolic

antenna of area An at a distance D from the first. Since the beamwidth

is proportional to 2r, its area is proportional to _,_rj........- _m,_ l,_.,_._".... *_ D2.X.2/d_._.

The percentage of the power which is received, assuming A r < D2k2/d 2, is

clearly proportional to the ratio of the area of the receiving surface to
the area of the beam, since all the power striking the antenna surface is

reflected to the focal point (the antenna is assumed to be parabolic) and

hence to the receiver input. Consequently, designating by PT the total

transmitted power, and by Pn the total received power, we have

AR
PR o: PT--

D2h2/d _

And finally, since the area of the transmitting antenna is proportional

to d_, we have

o:p A_Ar
PR T---_

Actually, this heuristically derived result can be shown to be exact, so
that

p ARAr
PR = _ _ (2.4)

For nonideal parabolic antennas, AR and Ar must be replaced by an

effective area which is always somewhat less than the true area. This is

primarily because of the fact that it is difficult to radiate the entire

surface of the antenna with energy of equal magnitude and equal phase.

Typically, the effective area is 50 to 80 percent of the actual area.
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As shown, the beam area at a distance D from the antenna is pro-.

portional to D2k_/A r. The power intensity over the beam front is there-

fore proportional to PTA T/D2_, 2. If the power were radiated uniformly in

all directions, the power intensity at a distance D from the antenna would

be equal to PT/4_D 2, since the power is uniformly distributed over a

spherical surface of area 4_'D 2. Recalling the definition of gain, we have

GT= I0 lOgloI_-_)_ I0 lOgloI_Z2 T1
(2.5)

Again, this equation can be shown to be exact so long as Ar is interpreted
as the effective area. Similarly, the gain of the receiving parabolic

antenna is
• ['4_rAR']

GR=10,ogl0 (2.6)

Then the received power in decibels is

10 log10 PR = 10 log10 Pr-I-GR-{-Gr-20 log10 4_D (2.7)

Equation (2.7) is valid regardless of the type of antennas used so long

as GR and Gr are the appropriate antenna gains.

In order to maximize the amount of power received or, equivalently, to

maximize the gains of the two antennas, it is necessary to make the

parabolic antennas as large as possible and the wavelengths as short as

possible. First of all, there are practical limitations to the shortness of

the wavelength. One of these limitations stems from the fact that,

beyond a certain point, the effective noise temperature of the best ampli-

fiers increases sharply as the wavelength decreases, thereby counteracting

the advantages in antenna gain. In addition, in order to realize the

theoretical gains of parabolic antennas, the dimensions of the antenna
must be accurate to within a fraction of the wavelength. Since the gain

increases in proportion to the area, it is advantageous to make the area as

large as possible. But the larger the area, the more difficult it is to keep

the tolerances within the necessary limitations. Thus, there is a trade-

off between the area and the wavelength. Moreover, because the trans-

mitting and receiving antennas are moving with respect to each other, it

must be possible to move the ground-based antenna so that this also

places restrictions on its size (the fact that the vehicle antenna must be

propelled through space, of course, limits its size). Finally, the trans-
mitter antenna must be pointed in space with an accuracy proportional

to the width of the beam or the maximum energy is not received at the

receiver antenna. This clearly also limits the gain, and becomes partic-

ularly significant at very short wavelengths.
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Antenna designs other than parabolic are also sometimes used in space

telemetry. An omnidirectional antenna which, ideally, radiates or

receives energy equally in all directions is always included on a spacecraft

as a safety factor to enable transmission to and from the vehicle regardless

of its orientation in space. Evidently this antenna has unity gain (0
dB) in all directions.

Clearly, stationary antennas can be much larger than those which

must be moved. Because space telemetry antennas must be accurately

pointed in space, stationary antennas are not too useful for this purpose.

It is possible to get some effective direction change in stationary antennas
by properly controlling the position of the source which radiates the

antenna as well as the relative phases of the energy striking the various

parts of the antenna surface. Such antennas are particularly useful in
radio astronomy.

The gains attainable with steerable antennas can also be increased

without exceeding acceptable mechanical tolerances by combining the

inputs from several seParate antennas. In order to realize these gains,
however, the separate inputs must be accurately adjusted in phase to add

constructively -" .... L^_ _. .... ÷;,,,_1,, ThiQ adjll._tment, of course, is a

function of relative positions of the antennas and must be charged as the
antennas are moved.



CHAPTER 3

Analog Modulation

BEFORE CONCENTRATINGON SOME of the recent modulation techniques for
space communications, it is well to review the more conventional methods

of wireless long-distance communications. Typically, a signal of the

form _¢/2B sin (o_t-t-_) is generated at the transmitter. If the frequency

f= _/2_r is sufficiently high, this signal can be applied to an antenna and

will cause an electromagnetic wave to be emitted into space. A signal

%/2A sin [o_(t-r)+_b] will then be excited at the receiver antenna, where
k = A/B represents the attenuation due to the medium and the distance

through which the signal traveled, and r is the delay representing the
time needed for the signal to travel from the transmitter to the receiver.

(The medium here and throughout this report is assumed to be constant

and to involve only one transmission path. In particular, k does not

vary with time, except perhaps for a slow steady change due to a change in

the distance between the transmitter and the receiver.)

If B and o_ and _ are kept constant at the transmitter, virtually no
information can be transmitted. The receiver is able to determine that

the transmitter must exist, but essentially nothing else. If, on the

other hand, any one or a combination of these parameters is varied in

accordance with some rule known at both the transmitter and receiver,
information can be transmitted. Commonly, there is some time function

f(t) which is to be transmitted representing, for example, a temperature or

pressure reading on a space vehicle, or a sound or light intensity in com-

mercial broadcasting. Thus if A in particular is made to vary pro-

portionately with f(t), A (t) =af(t), the resulting amplitude-modulated

signal is capable of conveying information. Similarly, if _(t) = bf(t) or if

dch/dt = cf(t), the signal is said to be phase modulated and frequency modu-

lated, respectively. These three types of modulation will be examined in
some detail in the next few sections.

AMPLITUDE MODULATION

The generation of an amplitude-modulated signal is relatively straight-

forward. The signal f(t) is converted to a voltage intensity in accordance

with its amplitude (e.g., a sound wave is passed through a microphone).

This voltage is amplified and multiplied by a signal V_2 sin (o00t+_b). In

43
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addition, for reasons which will become apparent shortly, some unmodu-

lated signal is also added. All of these procedures can be readily ac-

complished electronically. The resulting amplitude-modulated signal

x(t) = _B[l+mf(t)] sin (_0t-t-_) is then transmitted. The parameter m
is referred to as the modulation index.

The spectrum of the signal x(t) can easily be determined from the

spectrum of f(t). From "Spectra and Autocorrelation" in chapter 1,
it will be recalled that

_s(r) = lim 1 -[ rf(t)f( t_t_r) dt (3.1)
r_. 2TJ-r

and

¢i(_) =/__ 4,s(r)e -i_" dr (3.2)

Thus

4,x(r) =lim 2B2[l+mf(t)][l+mf(tTr)]sin(o_ot+cb)sin(_ot-l-_r-t-cb)dt
T_w _ T

=2BS< sin (_0t+_) sin (o_t+w0r+_)>

+2B%n<f(t) sin (_ot-t-_) sin (_otT_or+cb)>

+2BSm<f(tTr) sin (_ot+_) sin (_ot+_or+ch)>

+2B2mS<f(t)f(tH-r) sin (_otX-_b) sin (_tH-_r-l-ep)>

It will be assumed that the expected value of f(0 is zero; if not, let
f(t)--_+f'(t) where <f(t) > =_ and, hence, x(t) = _/2B[1-l-mu+mf'(t)]

sin (_ot+ch)=%/2B'[1Tm'f'(t)] sin (_otT_b). In addition, it will be

recalled from "Expectation and Independence" in chapter 1 that

<f(t) sin (_ot+O) sin (_otW_t+O)>

--<f(t)> < sin (_ot+O) sin (_otW_0r+O)> =0
and

<f(t)f(tTr) sin (_ot+_) sin (_otT_or+_)> = <f(t)f(t+r)>

< sin (¢oot+_) sin (_ot-{-_or+_)> =4,s(r) --

Consequently,

,bx(r) = B s (cos _r) [1 -{-m*chs(r) ]
and

-''°+',']j-.dr

/__ [ e-i('*-_)"-Ie-;(_-_o)'+_i(r) _ J dr+B2mS 0_ dPI(r)

=B'{_ra(,_--_o)+_ra(_+_) +-_ms Cs(_-- _) + _Cs(_+_o)}mS

cos a.'or

2

(3.3)
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• Amplitude modulate thus causes a shift in the signal spectrum with no
alteration in shape. This is graphically illustrated in figure 3.1.

¢ (_)

(a)

.-.. B2rr

-CO0

Cx(_)

I
I
(b)

B2w

J

FIGURE 3.1 --Spectrum shift due to amplitude modulation. (a) Modulating spectrum; (b) @=(¢o):X($)
IX Dr n .._/ _1 (..,.O A-_V _._tl-vmj ttjjsin ,,1.1._1, I "t-l-

(Delta functions are conventionally represented by vertical arrows as

shown, with the infinity signs designating their actual amplitude and

their amplitude as drawn indicating the area under their integrals.)

The average power transmitted is

1 f'_ B _ B_m _
Pave = _j_® ¢_(_) d_ = _-F--_-PI (3.4)

where Ps is the average power in the modulating signal f(t). The per-

centage of power in the modulation is

B_n_PI - m_Pl (3.5)
Percent power in modulation-B2+B_m2p s 1 ÷m2Ps

A perhaps more intuitive feeling for the spectrum of the modulated

signal may be obtained by approximating the spectrum @/(_) as shown

in figure 3.2. That is, the continuous spectrum of f(t) is replaced by

a discrete spectrum composed of delta functions with the property

that the amplitude of the delta function at the frequency f_ = iaf is

f 'r[/i'f-CAll2)ld_
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ill 1"tT"'[ t
FIGURE 3.2--A discrete approximation to a continuous spectrum.

Thus, the total power remains the same, but the spectrum is assumed
to contain discrete frequency components at the frequencies fo,-4-fl,

:t:f2, etc. Presumably, as Af-*0, the behavior predicted from the
analysis of this spectrum and that corresponding to actual spectrum

will be the same. Since delta functions of equal amplitude a_2/4 at

the frequencies -4-f_ correspond to a sinusoidal signal f_(t)=a_ sin

(27rf_tA-_), and since ¢I(_) is symmetric about _=0 (see footnote 2),

f(t) may be approximated by a sum of sinusoids. Consider the case

when f(t) = a sin _t. Then

x(t) = vZ2B sin (_otT4_) +%/-'2Bam sin (_otT4_) sin _.,t

Bma

= %/-2B sin (_ot+4_)+-_cos [(_o--_,_)t+4_]

Bma

-- -_cos[(_o+_m)t+_] (3.6)

The two-sided spectrum of this signal can be written by inspection:

_2 B 2
¢_(_) = _- 2_ (_ - _o)+-_ 2_6(_ + _o)

B2a2m 2 B2a2m 2

+ --_ 2_ (,_- ,_o+ _,_)+--_ 2,_ (,_+ ,_o- ,__)

B_a2m 2 B2a2m 2
+_ 2_(_- _0- _) +_ 2_(_+_0+_) (3.7)

and is represented graphically in figure 3.3. Thus, each component of

the modulating signal spectrum is translated by an amount _0/2f (and

This follows from the fact that _(r) =_(-T) (see "Spectra and Autoeorrelation" in

f: f: f"ch. 1). Since (b(_) = ®_(r) -i_" dr = ,_(- r) e-i_, dr = _®_(_') ei,_,' dr' (where we

have substituted _'= -r), and ¢(-w) = f= 4_(_)_ e +i_" dr we have the desired result.
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--o_0/2_) in frequency by the process of modulation.

is exactly what we concluded above.

47

This, of course,

Cf(_)

a 2

-co m 0

(o)

a 2

(_rn

_x(_)

B2a2m 2

-co 0 -_o m

B 2 _

_ B 2

-y

B2a2m2 B2a2m 2

8

-_O+_m 0 _0- _°m-_0 _0 co,..,._

(s)

B2a2m 2

w 0 +_°m

FIGURE 3.3--Two-sided signal spectrum. (a) Modulating signal spectrum; (b) modulated signal

spectrum.

Suppose that the frequency fm= _m/2_ represents the highest signifi-

cant frequency component in the modulating signal. Then the frequency

range of the modulated signal is fo-fm to fowl,,. If the bandwidth

of the modulating signal is W =f,, cps, then the bandwidth of the modu-

lated signal is [(/oWl,.)-(fo-f,.)]=2W cps.

DEMODULATION OF AM

In order to obtain useful information from the signal x(t) at the

receiver, it is necessary to demodulate it to obtain the desired signal f(t).

An AM signal may be demodulated in a number of ways. The most

common technique involves the use of a nonlinear element called a
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half-wave rectifier followed by a filter. The ideal half-wave rectifier

may be regarded as a device whose output y(t) is related to the input "

x(t) as follows:

{:(t) x(t)_O
= (3.8)

y(t) x(t) <0

A typical amplitude-modulated waveform is shown in figure 3.4. It

is seen that so long as mr(t)>-1, the signal x(t) is positive for 2kT

<t<(2k-F1)T and negative for (2k-F1)T<t<(2k-F2)T, for all integer

values of k and for T = 2_/o_0.

x(t) =V_-A [ l+mf('t)] sin COot

t -----II_

FIGURE 3.4--_ AM signal.

Consequently, the half-wave rectifier has the same effect on the received

waveform as if it were multiplied by the square wave shown in figure 3.5.

T

fiGURE 3.5--A square wave of period T-2f/_.

t
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• But, as shown in "Fourier Series and Fourier Transforms" in chapter 1,

the Fourier series expansion of this square wave s(t) is

14- _" sin _n/2
s(t) =-__ ,_._ _-_ sin no_ot (3.9)

Then

[" 1_ _-, sin _-n/2 ]x(t)s(t) = v_A [l+mf(t)] sin w0t --t-I_., ---
[2 ,-1 _m/2 sin n_ot

..$

{1 _ sin _rn/2 1='V/-2A[l+mf(t)]__sin_t+_ _a-_ _[cos (n-1)_t

-- cos (n_- 1)_ot]_ (3.10)
)

The

frequencies O, fo, 2fo,4fo, . .., as shown in figure 3.6.
product x(t)s(t), therefore, contains terms centered about the

!

FIGURE 3.6--The spectral density of the product x(t)s(t).

It is seen that all but the desired term (V'-2A/7)[1-+-mf(t)] can be elimi-

nated by filtering if fo-f,_>f,_ or if fm<fo/2, where f_ is the highest

frequency in the modulating signal.

DOUBLE- AND SINGLE-SIDEBAND MODULATION

While the method of AM communications described in the previous

section is quite satisfactory for commercial use, it has some important

limitations in those situations in which the available power is limited.

First, the demodulation scheme outlined requires that mr(t)>- 1. To

appreciate the significance of this limitation, suppose f(t)--sin 2rf,_t.

Then PI--1/2, and since mf(t)_-1, m must be less than 1, and the

percentage of power in the modulation is less than 33_/_ percent (cf.
eq. (3.5)).

To overcome this difficulty, consider the following demodulation

scheme: A narrowband filter is centered about f0 and the output is used

to estimate the frequency and phase of the carrier. (A practical method

for doing this will be considered in "Some Applications of Phase-
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Locked Loops" in this chapter.) Suppose that the carrier is of the.
form sin ¢0t and the estimate c(t)= _¢/2 sin(¢0t_8) is made where pre-

sumably 0 is small. Then the signal can be demodulated by forming

the product

x(t) c(t) = 2A [l-t- mr(t)] sin _00tsin (_00t+0)

A [1 -t- mr(t) ][cos 0- cos (2_0d-t- 0) ]

which, after filtering, yields the desired signal

x(t)c(t) = A[1 A-mf(t)]cos 0 (3.11)

Note that no limitations have been placed on the maximum value of

mr(t). The only requirement now is that there is enough power in the

carrier to enable a good estimate of its frequency and phase. It is not

obvious that this is superior to the previous AM system until we de-

termine how much power must be included in the carrier for satisfactory

results. In "Some Amplifications of Phase-Locked Loops" in this
chapter, we shall verify, however, that in a typical situation, less than 1

percent of the total power need be included in the carrier, thus allowing a

substantial increase in performance over conventional AM. This technique

of increasing the proportion of power in the modulation by suppressing the
carrier is commonly referred to as double-sideband, suppressed-carrier

(DSB/SC) modulation.

An interesting modification of the double-sideband amplitude modula-

tion system is afforded by a technique known as single-sideband modula-

tion (SSB). Recalling from "Amplitude Modulation" in this chapter that

the power spectrum _(_) of a real time function f(t) is symmetric about

_o=0, the spectrum of a typical modulating signal is as illustrated in

figure 3.7(a). It has been assumed that the lowest frequency component

in the modulating signal is fl>0, a situation commonly encountered in

practice and one necessary for SSB modulation to be practical.

As before, the upper frequency of the modulating signal is f,_<:fo/2.

Conventional AM or DSB modulation involves the product f(t) sin _00t,

which, as seen in "Amplitude Modulation" in this chapter, simply shifts

the spectrum to that shown in figure 3.7(b). Now suppose the signal f(t)

sin _o0t is passed through an ideal bandpass filter with the passband

fo-]-fl<_lf[<foTf,_. The output then has the spectrum illustrated in

figure 3.7(c). If this filtered signal f_(t) is transmitted and demodulated

by forming the product f'(t) sin _0otand filtering out the high-frequency

components, the resulting signal has the spectrum shown in figure 3.7(d).

Although two signals which have the same power spectra can be quite

different, it is intuitively clear and readily verified from the manner in

which the signal corresponding to the spectrum of figure 3.7(d) was

formed that the particular signal is identical to the original modulating
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(o)

(b)

(c)

(d)

-fro -fl
f.-_

f ----.-4D..

f ,,_lm,-

FIGURE 3.7--Power spectra illustrating the philosophy of 55B.

signal f(t). But note that by filtering before transmission, as described,
only half as much bandwidth is needed for SSB as for DSB modulation.

As with DSB modulation, it is necessary to transmit some carrier power

in order to demodulate an SSB signal. It can be shown in the latter case,

however, that the phase accuracy of the estimate need not be as great as
before to insure the same performance.

NOISE ANALYSIS OF AMPLITUDE MODULATION COMMUNICATION

The ultimate evaluation of any communication system rests" in its
behavior in the presence of noise. A convenient measure of this behavior

is the output signal-power-to-noise-power ratio S/N. In the case of DSB

and SSB modulation combined with product demodulation, this ratio is
readily determined. Consider first DSB 3 modulation. This received

signal may be written

x(t) = _/2a sin ¢ot + _/2A f(t) sin _0t

The total power in the modulation is A2PI, where PI represents the power

in the modulating signal. The signal x(t) is demodulated by forming the

8 When we refer to DSB modulation here, we intend double-sideband suppressed-
carrier modulation. The DSB/SC designation is somewhat redundant. Non-

suppressed-carrier modulation is denoted as "conventional AM."
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product V_x(t) sin o:0t and passing it through a low-pass filter with the o

cutoff frequency B =fro. The output due to the signal is therefore

{ _v/2Af(t) sin o:ot'V/2 sin o:ot} i, = Af(t)

where the subscript If designates the low-frequency components only.

The output signal power is consequently A_PI, the power in the modula-

tion. The output noise signal is

n_(t) = _v/-2n(t) sin wot

which, as we have seen, represents a frequency translation of the noise

n(t). Since the input noise is white, it remains white after the product
is formed:

<2n(t)n(t+r) sin _ot sin wo(t+r)>

= 2 <n(t)n(tWr) > < s!n wot sin wo(t+r) > = (No/2)_(r)

The power spectral density of nl(t) is therefore fiat with the amplitude

No�2. The output noise power is consequently (No/2)2B = Nof_ and the

output signal-to-noise ratio for DSB modulation is

(S_ A_Ps Pr-a _
N/DSB = N---_ = Nof,_ (3.12)

where Pr is the total received signal power, Pr=A_P/q-a _. When SSB

modulation is used, although half the signal spectrum is suppressed, the

other half can represent twice the power as before, keeping the total

radiated power the same. After forming the product V'2XssB(t)

sin _0_ and filtering, as before, it is evident from figure 3.7(d) that the
situation is identical to that for DSB modulation. Hence

S) Pr-b 2ssB =" Nor. (3.13)

where b is the amplitude of the received unmodulated carrier. Since,

generally, a2and 52 can both be small compared to the modulation power,

(_)DSB "=N---_=_N]ssBPr.(S_ (3.14)

Note that in each case we are considering ideal systems in which the

unmodulated carrier power is negligible. The received signal x(t) is

demodulated by forming the product _V/2x(t) sin ,.,ct. Of course, the

demodulation scheme using a half-wave rectifier will not achieve the
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• performance indicated here (although at high signal-to-noise ratios, the

two methods give essentially the same results for conventional AM).
Because we are considering modulation for space communications and

not for commercial radio and television, we are concerned primarily with

how well a particular modulation scheme can be made to work, not how
well it works with inexpensive, mass-produced receivers. Thus we are

only interested in the ideal system as analyzed above, which can, by the

way, be approached quite closely in practice. This approach spares us
the considerably greater difficulty of analyzing the signal-to-noise ratios
resulting from the use of more common demodulators such as the half-
wave rectifier.

ANGLE MODULATION

In this section we will consider communication systems in which the
signal

%/2B sin O(t) (3.15)

is transmitted, with the angle O(t) varying in accordance with the modu-

lating signal. If we define the instantaneous frequency as the rate of

change of the phase angle O(t), then _(t)= dO(t)/dt. Note that this

definition corresponds to the intuitive notion of frequency when O(t)= ¢t

q-00. When _ varies with time, however, the intuitive definition of
frequency is somewhat less clear.

A phase modulation system is one in which the phase angle O(t) is

allowed to vary with the modulating signal f(t):

O(t) = wot-4-Oo-l-AOf(t) (3.16)

Frequency modulation, on the other hand, implies that the instantaneous

frequency is made to vary with f(t):

But since _(t)= dO(t) /dt

_(t) = wcA-Awf(t) (3.17)

O(t) = fo_(t) dt = o_,tq-Ooq-z_o_f f(t) dt (3.18)

then FM is essentially PM with the exception that the modulating
signal in the latter is the derivative of that in the former. For this

reason, the two types of modulation may be analyzed simultaneously
so long .as this difference is borne in mind.
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As with any modulation scheme, one of the first considerations when.

an FM (or PM) signal is to be transmitted is that of its bandwidth

occupancy. Unfortunately, the bandwidth determination for FM is
considerably more difficult than that for AM. A useful simplification,

when the exact shape of the spectrum is less important than its width,
is to consider the case in which the modulating signal is a sinusoid

f(t) = cos _t
Then

_(t) = _o+_ cos _,t
and

O(t) = _o_t-4-A°: sin o:mt-_8o
_m

and hence

x(t) = %/2B sin [_ct+B sin _t_-00] (3.19)

where B = h_/_. By a trigonometric identity

x(t) = %/2B sin (_ctq-80) cos [$ sin _mt]

+_/2B cos (¢oct+Oo) sin [f_sin w_t] (3.20)

Thus, x(t) may be considered to be the sum of two amplitude-modulated

signals,

x(t) = %/2A (t) sin (_ct-kOo) + _¢/-2B(t) cos (_ct +Oo)

To determine the spectrum of x(t), we need only find the spectra of

A(t)=cos[$sin_,,t] and B(t)=sin[$sin¢mt] and shift them by an

amount wc as in the case of amplitude modulation.

But, since sin [_m(t+ T)] = sin _0_t for T = 2_/_, then

and
cos [$ sin w_t]= cos [$ sin _(t-t-T)]

sin [$ sin _t] = sin [$ sin _(t-_T)]

and both terms are periodic with period T. Consequently, they may

be expanded in a Fourier series; the power spectra are then determined

from the squares of the Fourier coefficients. Since

and
cos [_ sin _t] = Re e i_ ,i, _,\

sin [_ sin _t] = Im e i_ .i, _,

(3.21)
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• where Re(z) and Im(z) designate, respectively, the real and imaginary

parts of z, it is sufficient to expand the term e _'a,i_ _ in a Fourier series.
We obtain

2wn
eiO sin wmt= _ Cnej_., wn-- (3.22)

.... T T

where

f T/2

aN-= j_r/2 ei(_ sin w_,,t-_at) dt 2f

Letting i'-- 2rt/T, we have

1/.c--2_ ei03 ._n t-.r) d_- (3.23)T r

This integral commonly occurs in physical problems and has been

thoroughly investigated and tabulated. It is known as the Bessel
function of the first kind and is usually denoted J.(fl), where n and

are the two parameters of cJT. First, we observe that, letting

But

1
J-_(_) -- _J0 ei(_ _in _-._) ei., dn

_ (-1)" sin C--m/)d,

2f J0

f_" 1 f_"1 ei(B ei_ r-N.) d*/= 2-_J0 ei(_ sin v--n_/) d_/

since e i(a e_. ,-_,) is periodic in ,1 with period 2_r and all integrals over a

complete period are equal, regardless of the limits. Thus

and

J_,,(fl) = (- 1),J.(_)

n.-,o

= Jo(t_)A-2 _ J,(t_) cos _.t-4-2j__, J,(_) sin ¢.t
n-2 t_.l

even n odd n

As a result

cos [t_ sin _t] =Re e__ sin _..t=Jo(_)+ 2 __, j,(f_) cos _.t
n--2

even n

(3.24)

(3.25)

(3.26)
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and

and finally
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sin [/3 sin co..t] = Im e it_.in _.,_= 2 _ J,(/3) sin o_.t
n-I

odd

x(t) = _/2B cos [/3 sin o_mt]sin (o_ctT8o)T_/2B sin [/3 sin o0mt]cos (oJctT8o)

= %,/2BJo(/3) (sin _,ct-t-Oo) +_f2S _ g,(/3){sin [(_- _0,)t-t-00]
#--2

even

+ sin [(_c+_.)t+0o]}

-.v/2B _'_J.(/3) {sin [(oJ_-_o.)t+0ol-sin [(_c+o_.)t+0o}] (3.27)
n_l

odd n

The power at the frequency o_=_o_+oo, = o_+noJm is just B_J,_(/3).

Since the power at a given frequency is dependent upon the magni-

tude of a Bessel function, it is necessary to make some observations

concerning these magnitudes. In particular note that for n> >/3

1/.J,(/3) _ _ , e-i-, d_ = 0 (3.28)

It may be verified, by referring to a tabulation of the Bessel functions

(see refs. 1 and 2), that J,(/3)<0.01 for n>k/3 where k(/3) has the form

shown in figure 3.8. Thus k rapidly approaches 1, and for large/3 the

terms J.(/3) are negligible for n>/3

l l I I | i i i ' t i I i i I I

0 4 8 12 16

FIGURE 3.8--Values of n/O-k such that J. (0)<0.01 for n>__k$.
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The power in the received FM signal x(t)=x/2A sin [o_ct+_ sin

_mt+00] is

lfr . A 2ft. A 2fr-_ x_(t) dt=-_J ° dt---_J ° [cos (2o_ct+2fl sin _mt+200)] dt (3.29)

where T is the period of the function sin [_ct+_ sin _mt+00]. (If _c

is not a rational multiple of _, T will be infinite.) Since the integrand

of the second integral on the right of equation (3.29) is periodic with

period T/2, the integral is zero and the total received power is A 2.

Since Jn(fl)<0.01 for n_k_, the power at the frequency component

fcq-nf,_ represents less than 0.01 percent of the total power (Jn_(fl)

,:10-4). Consequently, the elimination of frequencies outside the

region fc--k_f,_<lf [,_f_+k_f,_ should have a negligible effect upon the
signal x(t). The bandwidth of such an FM signal is then W=2k_f,_

and, since, for fl_>>l, k_l, W=2_f,_ for large modulation indices /_.
That W cannot be made significantly less than this without serious

distortion may be verified by again referring to a table of Bessel functions
and observing that Jn(fl) increases from zero fairly rapidly as n decreases

below k/_.
Note that since _ = ho_/¢_ = Af/f,, in the case of frequency modulation,

W = 2Af and is independent of frequency so long as Af, the amplitude
of the modulating signal, does not vary with frequency. Thus if the

average power in the modulating signal f(t) is the same for all modulating

frequencies (i.e., if the power spectrum off(t) is fiat), then, on the average,

the bandwidth occupancy of the FM signal will not vary with ttm

frequency of the modulating signal. Since, as we shall show, the per-

formance of FM is proportional to its bandwidth, it is desirable to have

maximum bandwidth occupancy as consistently as possible.

With a phase-modulated signal, the analysis is identical except that
now fl=h0 and W----fmhO. Thus, if the amplitude of the modulating

signal is independent of frequency, the bandwidth of a phase-modulated

signal increases with the modulating frequency, a generally less desirable
situation. On the other hand, ordinary speech and music exhibit the

property that the amplitude of a frequency component, beyond a certain

frequency, tends to be inversely proportional to the frequency. In this

case, A0 _: (1/f,_) and the bandwidth W of a PM signal remains constant,

independent of frequency, whereas an FM bandwidth would decrease

with increasing frequency. For this reason, commercial FM modulating

signals are preceded by a preemphasis network which increases the

magnitude of the higher frequency components by an amount pro-

portional to their frequency (i.e., the modulating signal is partially

differentiated). This is then counteracted by a deemphasis network at
the receiver which reverses the operation. Commercial FM therefore is
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strictly neither FM nor PM, but a combination of both. Clearly, the
distinction is irrelevant so far as the system is concerned, the only"

difference between the two being that of the preconditioning of the

modulation signal.

Generally, then, an FM or PM modulation system is as illustrated in

figure 3.9. The voltage-controlled oscillator (VCO) is a sinusoidal oscillator,

the output frequency of which is proportional to the input voltage; if the

input voltage is f(t) volts, the output frequency is fc_f(t)_f cps.

f(t)
Pre-

conditioner
VCO

Wide-band

amplifier

FIGURE 3.9--An FM transmitter.

There are a number of ways of implementing the block diagram of

figure 3.9. However, since we are interested primarily in the system

rather than in its particular realization, suffice it to observe that voltage-

controlled oscillators can be designed to give the desired performance over

a wide frequency range.

DEMODULATION OF ANGLE-MODULATED SIGNALS

There are several methods by which an FM signal may be demodu-

lated. Any device capable of linearly converting a frequency variation

into an amplitude variation can serve as an FM demodulator. Such a

device is called a frequency discriminator. Suppose, for example, that

the FM signal is passed through a filter with the characteristics

IH(j2rf)l =Kf f_--Af<lf I<f¢+Af

Clearly, the output amplitude is proportional to the input frequency
as desired and the FM signal is thereby demodulated. This, in fact,

is a somewhat simplified version of a commercial FM discriminator.
Another FM demodulator can be designed from the following point

of view: Suppose we have, at the receiver, a VCO which is identical to that

at the transmitter. If we then make a preliminary estimate of the

amplitude of the modulating signal and apply it to the VCO, the similarity

between the output of the VCO and the received FM signal will provide us

with a measure of the accuracy of this estimate. We could then use

this comparison to improve our original estimate. If we use the com-

parison itself to adjust the VCO, the system can be made to track the
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• modulation signal. One way in which this may be accomplished is

illustrated in figure 3.10:

x(t) ,(

_s(t)

_I h(t) ! y(t)

FIGURE 3.10--A phase-locked loop.

This device, called a phase-locked loop, consists of a multiplier, a filter

h(t), a VCO, and a device which shifts the phase of the VCO output by

90 °. To analyze its behavior, suppose that the signal x(t) is

x(t) = _ sin (o_J+Ox)

and suppose that the VCO output is

:_(t) = _ sin (o_,t+8_)

where 08=81--02 represents a small tracking error. Then the product

x(t)_,(t), where _(t) represents the shifted version of _(t), is formed,

yielding

x(t)._,(t) =2 sin (_oJ+O_) sin _oJ-t-02-t-_

=cos ,- -cos .,ot+sx+8_

The last term is a high-frequency component and will be eliminated by

the combined action of the VCO and the filter h(t). The low-frequency

component cos [Se--(_r/2)]=sin 88_88 (the last step follows from the

assumption that the phase error 88 is small) is the input to the VCO.

Suppose 88 is positive. Then the VCO frequency is increased to some-

thing slightly greater than o0c, thereby decreasing the difference between

81 and 02 and hence decreasing Oe. Similarly, if 88 is negative, the VCO

frequency is decreased, again decreasing the absolute value of the
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difference between 01 and 02. The loop therefore acts so as to reduce the.

phase error to zero.

Now suppose 01 varies with time, 01=01(0. The loop will again act in

such a way as to keep the phase error nearly zero. Then Os(t)_-_O_(t).

The difference between the VCO center frequency ¢0_and its actual fre-

quency is proportional to its voltage input. Since the instantaneous

frequency of the VCO output is

d [o_ct+O2(t)] =,_o4 d0s(t)
dt dt

the input to the VCO must have amplitude

where k is a constant of proportionality. Consequently, if the input

to the loop is a frequency-modulated signal, O_(t)=Ao_ff(t) dt+Oo, and the

input to the VCO is just

y(t) ._ k d01(t) = kAo_f(t) (3.30)
dt

and the desired signal is recovered.

ANGLE MODULATION NOISE ANALYSIS

To determine the effect of noise at the input, let x(t)=n(t) be white

noise. Then n(t)Y:,(t) = n(t) _/2 sin [oJct-l-O2(t)-k- (_/2)] = nl(t) is also white

noise, since as observed in "Amplitude Modulation" in this chapter,

multiplying a signal by a sinusoid serves to shift its frequency spectrum.

But since the spectrum of white noise is fiat at all frequencies, shifting it in

frequency by any amount does not alter this fact. Further, since

<nlS(t) > = <nS(t) > <2 sin s [_o_tTOs(t)-k- (_r/2)]> = <n2(t) > the power

spectral density retains the same magnitude before and after the multi-

plier (ef. "Noise Analysis of Amplitude Modulation Communication"

in this chapter).

Now consider the situation in which x(t)--v_A sin [_oct+O_(t)]+n(t)

and _.(t)--g_ sin [o_t+Os(t)+(_-/2)], where, again, it is assumed that

O_(t)-O2(t) is small. The low-frequency term of the product x(t)_.(t) is

given by

[x(t)_.(t)]=A sin [O_(t)-O_(t)l+n_(t)_ A[O_(t)-Os(t)l+nl(t) (3.31)
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Since Os(t) is adjusted by the action of the loop to keep the error signal and

hence the input to h(t) small, it follows that

and, consequently

0_(t)_-el(t) 4 nl(t)
A

d02(t) k d0_(t).{ k dn_(t)
Y(t)=kT_-" -_ A dt

(3.32)

k dnl(t) (3.33)
= kA_f(t)-_ A dt

Since the desired output is kAo_f(t), the term (k/A)(dnl(t)/dt) represents

output noise.

To gage the magnitude of the derivative of the noise, we approximate,

as in "Amplitude Modulation" in this chapter, the continuous noise by

the discrete components a, sin (2_rvAft-l-O,) at the frequencies f,=vAf,

v=O, 1, .... Then ,L_nv_u¢,i,,_.,._^-'""+;-"_o¢.....t.h_ noise consists of the components

2ff, a, cos (2xpAft+O,) (3.34)

and if the power spectral density of the noise is _(_)= No�2, the power

spectral density of its derivative is ¢'(_)= (N0/2)(2xf) _.

The signal-to-noise ratio at the output of the FM demodulator is

determined as follows: The signal power is

< ks(a_)sp(t) > = ks(a_)sp_ (3.35)

and the noise power is

ksfs.w_,, _d_ ksN0fw

k2N°W3 (3.36)
= (2_-) 2 3A 2

where W is the bandwidth of the output signal. Clearly, W=fM, the

maximum frequency component of the modulating signal, since no higher

frequencies are of interest. (If the loop itself did not eliminate all

frequencies greater than fM cps, it could be followed by a low-pass filter

which did.) Therefore the output signal-to-noise ratio is
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S) 3A2(Ao_)2P I

S

(3.37)

Recalling that, for large values of f_, the bandwidth occupancy of the

modulated signal is approximately 2hf=2fJfM and that the DSB

bandwidth occupancy is 2fM, _3may be interpreted as the ratio of the

bandwidth needed with FM to that necessary for conventional AM or

DSB transmission. We have shown that the signal-to-noise ratio im-

provement in FM is proportional to the square of this bandwidth multi-

plication factor _. Consequently, FM provides a means for increasing

the bandwidth to obtain improved performance. Since increasing the
FM bandwidth by B achieves the same results as increasing the signal

power by _2, FM may also be regarded as a method of exchanging power

for bandwidth to keep the same performance.

The analysis of the signal-to-noise performances of PM follows along

the same lines as that for FM, except that instead of the signal y(t)
of figure 3.10, we are now interested in its integral. That is, since

02(t)_Ol(t)+[nl(t)/A] where, in this case, 01(t)=hOf(t), it follows that

02(t) is the quantity of interest, not its derivative y(t). Thus the input to

the VCO must also be passed through an integrator in order to yield

the desired output. The output signal power is clearly (AO)2Pf while the

noise power is (1/A2)NofM resulting in a signal-to-noise ratio

(-_)PM 2 A2P't-
(3.38)

In discussing phase-locked loop demodulation of FM (and PM), we

have made some assumptions which should be emphasized. In particular,

it was assumed that conditions were such that the VCO phase output was

sufficiently close to the input phase that the approximation sin [01(t)

-02(t)]_8_(t)-02(t) was valid. However, the loop dynamics require that

02(t) _0t(t)-_-[n_(t)/A]. Clearly, if the term n_(t)/A represents a phase

angle of, say, more than 10 °, then this approximation becomes un-

acceptable. But since

<-_> =0

and

n,2(t) Nof u<_ > = (3.39)
A 2 A2
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(see footnote 4) it follows that nl(t)/A will be small compared to 10 ° only so

long as the term NoB/A 2 is sufficiently small. As NoB/A _becomes large, it

will not infrequently happen that this noise term causes 02(0 to be

different enough from 01(t) so that the loop can no longer track the

input. We have not specified the form of the filter h(t). If possible,

it is to be chosen so that 02(t)_0l(t) regardless of the variation of 0l(t),

even in the presence of the noise n_(t). Techniques are available for

mathematically specifying the optimum filter when the signal and noise

spectra are known. Nevertheless, if the normalized noise power NoB/A 2

is large, the difficulties mentioned above remain, regardless of the
filter h( t).

This threshold effect when the noise becomes suffiCently large is

characteristic of any FM demodulating scheme. This may be seen

intuitively by referring to figure 3.11. A frequency-modulated signal
is shown in figure 3.1 1 (a). The same signal is shown in figure 3.1 1 (b)

as perturbed by a small amount of additive noise, and in figure 3.11(c)

as altered by noise with a considerably greater power. Since the in-

formation is conveyed in an FM signal by the instantaneous frequency,

a measure of the effect of the noise exists in the comparison of the
position of the zero crossings before and after the addition of the noise.

It is seen that, as the noise increases, some zero crossings will be added

by the noise while others will be eliminated entirely. When the noise

reaches a level at which these phenomena become relatively common,
the demodulated signal rapidly deteriorates.

SOME APPLICATIONS OF PHASE-LOCKED LOOPS

Before concluding this chapter, it is well to remark that phase-locked
loops have many applications other than FM or PM demodulation.

Some of these will be discussed subsequently; others have already been
mentioned. In particular, in the case of DSB and SSB modulation

it was suggested that the suppressed carrier be tracked by a phase-

locked loop in order to acquire the reasonably accurate estimate of it

which is necessary for product demodulation. The analysis of the

phase-locked loop in this situation is identical to that presented in the

previous section with two exceptions: First, the phase of the received

signal 0_(t) is constant except for a small variation caused by instabilities

in the transmitter oscillator, by movement of the transmitter relative

to the receiver, and perhaps by random fluctuations caused by the

4 Since the effective loop bandwidth is fM cps and it is only the noise within this

bandwidth that can have any effect

• 1 T 1 ®

<n,'(t)> :llm f
_ No[/M
-- _ .]_lu df=N°fM
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FIGURE 3.1 I--Effect of noise on a frequency-modulated wave. (a) A frequency-modulated wave

(b) with small additive noise; (c) with large additive noise.

transmission medium. It is not caused to vary deliberately, and hence

the bandwidth of Ol(t) is very much less here than in the case of FM

demodulation. Second, the desired signal output is not y(t) but rather

_(t), since it is the carrier itself, not just its phase which is to be esti-

mated. The phase error of the estimate i'(t), it was seen, is just nl(t)/a

(where _a is the carrier amplitude) and represents an effective phase

error power NoBL/a _ (where BL is the loop bandwidth). Thus, since

the loop bandwidth BL can be very narrow, the phase error can be

reasonably small, even for quite small values of a. Since the phase

error power NoBL/a _ is the expected value of the square of the phase

error, the square root of this quantity gives an estimate of the magnitude

of the phase error which is encountered. By requiring _¢/NoB/a_<l/6

radians for example, one can be reasonably sure that the phase error
remains within tolerable limits. It will be recalled from "Noise Analysis

of Amplitude Modulation Communication" in this chapter that
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where Pr is the total power in the received signal; No, the noise spectral
density; and fM, the signal bandwidth. This was true under the as-

sumption that the ratio of the power in the carrier to that in the modu-

lation was negligibly small. Suppose, as an example, that it is required

that the output signal-to-noise ratio (S/N)AM must be at least 1; that

is, the signal power must be at least as great as the noise power, a
generally quite marginal condition. Then

and

NeB (S'_ NoB PT 1
a s \N]A_---_ N-"_=3-6

P__.E=l f_
a s 36 B

Typically fM=6000 cps, while the effective loop bandwidth of the

carrier tracking loop can be made 1.0 cps or less. Thus

and, indeed, the required carrier power is negligible.
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CHAPTER 4

Pulse Modulation

IN THIS CHAPTER we consider modulation techniques which differ funda-

mentally from those of the previous chapter. As a point of departure

we begin with a discussion of the sampling theorem.

THE SAMPLING THEOREM

It is rather obvious that many of the measurements which are mon-

itored on a spacecraft do not need to be observed continually. Tem-

peratures, for example, generally vary quite slowly and readings need
be taken only every minute or even every hour, certainly not con-

tinuously. It is perhaps surprising that not only temperat'ta-e but

any continuous time function can be observed only periodically without

any loss of information concerning the original signal, whenever the signal
power spectrum is identically zero for frequencies greater than some

finite frequency W. The complete time function can be reconstructed

from the periodic samples alone.

To verify this, consider the periodic function S(t) illustrated in

figure 4.1:

s(t)

A

-r/2 t

T

I

FIGURE 4.1--The periodic function _(t).

]
67



68 TELECOMMUNICATIONS

Since S(t) is periodic, it can be expanded in a Fourier series

21¢n
S(t) =1 __, c,e i_"' _.=-- (4.1)

T__. T
where

c.=A_ sin _.r/2

Now suppose we have some time function x(t) which we wish to trans-

mit. Consider the product x(t)S(t). It will be recalled from "Ex-

pectation and Independence" in chapter 1 that

<x(t)x(t-t-r)S(t)S(t-Fr) > =R=(r) <S(t)S(t +r) >

- Ict, l_ .

(4.2)

and, hence, upon taking the Fourier transform

¢.lc.l _ / 2rn\

where _(_) is the power spectrum of the product and ¢=(_)is the spectrum
of the process x(t).

Thus, if x(t) has the spectrum shown in figure 4.2(a), the spectrum of the

product x(t)S(t) is that shown in figure 4.2(b). Note that so long as

W<I/2T, there is no overlap of the components of the spectrum ¢(_).

(a)

(b)

-2/T

I
W

f-.,_

MMM ,
-1/T -W W 1/T 2/T f'--_

FIGURE 4.2--Power spectra. (a) z(t)_ (b) x(t)S(t).



" PULSE MODULATION 69

Thus, the higher components can be filtered off, leaving just the original

spectrum _(_) multiplied by the constant ]co/Tl_=(Ar/T)_. Con-

sequently, the time function x(t)S(t) contains all of the information of the

signal x(t). Note that this is true regardless of the value of r so long as

A_-/T>O. In particular, if we let r--_0 and A--*_ such that Ar/T=I,

S(t) becomes a periodic sequence of delta functions with amplitudes T,

and x(t)S(t) becomes a sequence of delta functions with amplitudes

Tx(nT). Thus all of the information needed to reconstruct the signal

x(t), when the spectrum of x(t) is limited to W cps, is contained in the

values of the amplitude of x(t) at the instants of time x(nT), subject only

to the constraint that T< 1/2W.

This result is known as the sampling theorem. It states that we need

only concern ourselves with periodic samples of a bandwidth-limited time

function. Only the sequence of numerical values x(nT) need be trans-

mitted. The complete function x(t) may be reconstructed at the receiver

by generating a series of delta functions of area x(nT) and passing them

through a lowpass filter.

TIME AND FREQUENCY MULTIPLEXING

There are a number of advantages associated with sampled data

telemetry systems. First, some rather elegant techniques have been

devised for transmitting sampled data. These methods at the same time

are relatively easily implemented and achieve large signal-to-noise ratio

increases at the expense of bandwidth.

In addition, it is generally considerably easier and more efficient to

handle sampled data than continuous data. Typically, a spacecraft may
contain 100 to 1000 data sources. Some method must be used to keep the

information from each source separate. One method for doing this,

called frequency multiplexing, consists of forming the products x_(t)

sin _it for each data signal x_(t), i= 1, 2, . . . . The frequencies ¢_/21r

must be such that the spectra of each of the signals do not overlap as

shown in figure 4.3. The signal

N

z(t) = _ x,(t) sin _,(t) (4.3)

then has the composite spectrum of figure 4.3, and x(t) may be treated as a

single source with a bandwidth

N

W = W0+2 _ W_ (4.4)
i.1
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S
2W0 2W1 2W2 2W 3

FIGURE 4.3--Frequency multiplexing.

Since the individual spectra do not overlap, the different signals x_(t)

can be reconstructed at the receiver by proper filtering. Unfortunately,
this method demands that each source be followed by a device for forming

the product x_(t) sin _t, a procedure which is quite inefficient, particularly

on board a spacecraft.

The alternative is to sample each of the signals x_(t), represent the

samples as pulses of duration TIN where T is the sampling rate (here it is

assumed that all signals have the same bandwidth so that T-- 1/2W is the

same for all x_(t)), and time-multiplex these samples as shown in

figure 4.4.

ITI,.
T/N _ T W 2T

FIGURE 4.4--Time multiplexing.

t-_

The pulse labeled i corresponds to a sample of the process xi(t). If

the bandwidths of the pulses are not the same, the sampling rates must

be different, or all rates must be equal to that demanded by the signal

with the largest bandwidth. Different sampling rates can readily be

accommodated so long as they are integrally related. That is, suppose

x_(t) has a bandwidth which is twice as great as x_(t) and the two are to be

time multiplexed. Since xl(t) must be sampled twice as often as x2(t),

they can easily be multiplexed as shown in figure 4.5. Thus, in time T

two samples of xl(t) are transmitted while one sample of x2(t) is trans-

mitted; both are sampled at the correct rate.
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T

FIGURE 4.5--Time multiplexing of signals with unequal bandwidth$.

t -'--IP-

A time-multiplexing system involves only the problem of commutation

or the interspacing of samples from the various sources at the proper rate.

No power-consuming auxiliary equipment, other than a minimum amount
of switching devices, is required.

It might be supposed that, since each data signal is only being observed

for an infinitesimal fraction of the time, the bandwidth requirements

could be considerably reduced. Actually this is not the case as can

be seen in the discussion of particular pulse-modulation systems. To

see this heuristically, recall from "Bandwidth" in chapter 1 that the
effective pulse width and effective bandwidth of a signal were related

by r= 1/2B. The sampling theorem states that a signal of bandwidth

W must be sampled at least every T = 1/2W seconds. If this amplitude

were transmitted as a pulse, the pulse could last only T seconds before

the next sample must be sent. Thus the pulse width cannot be greater

than r--T= 1/2W and, hence, the effective bandwidth occupancy is

B= 1/2r= W, the bandwidth of the signal. The same comment applies
to multiplexed signals; frequency multiplexed signals require a bandwidth

at least as great as the sum of the bandwidth of the individual signal

w = w, (4.5)
i

(Actually, it is seen from equation (4.4) that the bandwidth there is

about twice this value. However, it will be recalled from "Double- and

Single-Sideband Modulation" in ch. 3 that half the bandwidth may be

deleted without any loss of information. Thus, in the case of single-
sideband frequency multiplexing, the above statement holds. This

could be done, of course, only at the expense of additional equipment.)

A time-multiplexed system involving N data sources has only TIN
seconds per pulse as was seen in figure 4.4. Thus, the effective band-

width is increased by a factor of N in the case of equal signal bandwidths

W_ = W (r = 1/2NW, B = NW). Similarly, the frequency-multiplexed
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signal bandwidth is increased by the same factor under the same condition
as seen from equation (4.5). If the bandwidths are not equal, the

frequency-multiplexed signals can be spaced more efficiently, in general,
since there is no necessity for the sampling rates to be integrally related.

However, this advantage is offset by the necessity of single-sideband

multiplexing to avoid increasing the bandwidth by a factor of 2.

PULSE-MODULATION SYSTEMS AND MATCHED FILTERING

In the sections that follow, a number of pulse-modulation methods

are discussed. To simplify the discussion, it will be assumed that the

data input to the transmitter consists of a sequence of samples at some
average rate, say R samples per second. Thus each sample has T-- 1/R

seconds in which to be transmitted. It is unimportant whether this

sequence comes from one source or is the time-multiplexed output
from a number of sources. A pulse-modulation system involves the

transmission of a particular waveform f(t) representing the sample in

question for a period of time T seconds. The transmitted signal, there-

fore, is allowed to change form only every T seconds.

Before proceeding to discuss various pulse-modulating schemes in

more detail, it is of interest to consider the generic form of the demodu-

lators for pulse modulation. The pulse-modulated signal, as observed,

is characterized by a waveform f(t) which is transmitted without change

for vT<t<(vTl)T. To prescribe the desired demodulator, it is neces-

sary to specify its exact function. Let us assume first that the de-

modulator network is to be linear. (Surprisingly, for the situations

of interest here, the linearity constraint can be omitted without altering

the conclusions.) We would like the output of the network to be large

when f(t) has been transmitted and small when it has not. We are,

in fact, interested only in whether f(t) was actually transmitted, not in

reproducing it at the receiver, since presumably we know the functional

form of f(t). Thus, since we want to decide whether or not Af(t) (A

is a function of the transmitted power and of the channel attenuation

factor k) has been received over the time interval vT,_t<(v-l-1)T, the

logical time to observe the output of the network is at the instant of
time (v_-l)T after all the pertinent information has been received.

At this time we would like the output to be as large as possible if Af(t)

were present and as small as possible otherwise. Since noise n(t) is

always present, the output due to the noise, in particular, should be

kept small. Thus, if Ag[(v-l-1)T] is the output due to the signal Af(t)

at the time (v-t-1)T and if the average noise power output is Nx, we would

like to find the linear system which maximizes the ratio AIg[(v+ 1)T]I/N_.

Since A2g_(t) is a monotonic function of AIg(t)l , it is equivalent to max-
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• imizing the ratio A_g_(v+I)T/N_. Finally, designating by No the

single-sided input noise spectral density and letting

A2Ej= A2 f. "°®f2(t) dt=A22_ j-_f ®lf(Jos)l_ dos (4.6)

be the received signal energy, the expression A2g_[(v-+-I)T]/NH is max-

imized if and only if the ratio (No/2)g_[(v+l)T]/NxEl is maximized,

since Ej and No�2 are constant, independent of the network at the

receiver. Let us denote the impulse response of the linear system by

h(t) and its transfer function by H(flo). Then, from "Linear Systems"

in chapter 1

g(t)= f_: H(jos)F(jos)ei,' dos2-_ (4.7)

where F(jos) is the Fourier transform of f(t), and

g[(p+ l )T]= f_: H(yo)F(jos)ei,(.+,)r _ (4.8)

Assuming the noise spectral density is flat over the region of interest

with the two-sided spectral density No�2

N0 '0

(see footnote 5). It thus becomes our goal to maximize the ratio

g_[O,+l)T] n(j_)F(j_)e'_C,+')_"
= ® (4.10)

• 2dos ® . _d_
NHE! f_: IH(3w)I _/_ ]F(2w)l

5 See "Linear Systems" and "Spectra and Autocorrelation" in eh. 1. Since

NR(t)ffi f?, n(t-_.)h(r) dr

the output noise power is

<Yx'(t) > = <ifJrn(t -r)n(t-_)h(r)h(_) dr d_>

=f'_.f[.<n(t-r)n(t-n) >h(r)h(,) dr d_

This last step follows from the fact that we are taking the expectation with respect to

the time t, and h(r) and h(_) are independent of t. But <n(t-r)n(t-_)>

= (No/2)$(r-,1) and so

=_o[']'-- h(r)_(,)_(r-,) dr d,Nu ffi <nu_(/) > 2 ......

No f" • d_
Nor "h'(r) drf yJ_,iH(j,_)l'=-2-.t-,,
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We can easily obtain a bound on this ratio by using the well-known

Schwarz's inequality which states that

/: L: /X(s)Y(s) ds[2-__ ]X(s)[2 ds IY(s)12 ds
DO

(4.11)

Thus, since

IF(j_)ei_(,+l) r] = ]F(j_)[

it follows from equation (4.10) that

Suppose, now, we let

No

-_-[g2(vT1)T]
__1

NHEI

(4.12)

H (j_)ei,,,(,,+l) r = F(-j_) (4.13)

Then

=1

d_ f "_ . 2d_

Thus, the upper bound on the ratio (4.10) is achieved if H(jo)

= F(-j_)e -i_('+l)r or if

h(t)=f_: • "_ do

--f[(_+l)T-t] (4.14)

and the network with the impulse response h(t) =f[(v+ 1)T-t] is optimum
in the sense described.

Let y(t) be the actual received signal. Then the optimum test to

determine whether y(t)=Af(t)+n(t), where n(t) is white additive noise

and A is some arbitrary gain constant, is to pass it through the network

with the impulse response (4.14). Since, from "Linear Systems" in chap-

ter 1, the output from such a network due to the input y(t) is
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_
g[(vW1)T]= h[(vT1)T--r]y(7) dr

--oo

_®f( )y( )= 1" r dr
oO

f (v+l) T= f(r)y(r) dr
J_T

(4.15)

where the last step follows from the fact that f(t) lasts only T seconds,

vT<t<(v+l)T. The optimum pulse-modulation receiver, it would

seem, forms the integrals

g,[(v+ l)T] = _/ ('+l)rf,(r)y(r) dr (4.16)
dvT

for all possible signals f_(t) and selects the largest as that corresponding to

the signal that was actually transmitted. This conclusion follows from

the fact that, if the signal fro(t) is transmitted, the output g_[(v+ 1)T]

should be large, whereas all other outputs g_ [(v+ 1)T], where i#m, should

be small. That such a receiver, consisting of a bank of detectors forming

the quantities g_[(v+ 1)T] (such detecLors are called corre!,_tion detectors or

matched filters for rather obvious reasons), is in fact optimum can be

proved rigorously when the additive noise is white and Gaussian. The

optimum decision, when each signal f_(t) has the same energy, is, indeed,

to select the maximum over i of the outputs g_[(v+l) T], When the signal

energies are not independent of i, the optimum decision is to select the

largest of the terms

g,[(v+ 1) T]--2 El, (4. 17)

where

f (v+l) 2"
Eli= J,r f_(t) dt

is the energy in the ith signal. The same procedure is, of course, repeated

for every time interval v T < t < (v+ 1)T for all integers v.

PULS_AMVmUVE MODULATION{PAM_

Perhaps the most obvious method for transmitting sampled data is
pulse amplitude modulation. If the data sample is x. the signal V_x,B

sin o:ct is transmitted, vT < t < (v+) T, the received signal then becoming

y(t) = _V_Ax, sin o:ct+n(t) (see footnote 6). As discussed in the previous

section, the optimum detector forms the quantity

6 There will be, in general, a phase and probably even a frequency shift between the

transmitter and the receiver. However, this will cause no difficulty so long as the

received phase and frequency are determined at the receiver and used to generate the

local signals f_(t). This knowledge will be assumed here so that the phase and fre-

quency shift can safely be ignored.
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f (_+I)T

g,[(uT1)T]-A E,,= J_ r y(t)x/2x, sin ¢ct dt

A/(,+l)r
-2J,r 2x? sin 2 _ct dt

(4.18)

for every possible amplitude x_ of the received signal, and selects the

largest of these as the best estimate of the received signal. But a condi-
tion that the quantity g_[(vT1)T] be a maximum is that

or that

d ,.rq.+!_.T]=0

(_+l)T f(_+l)T
y(t)'v'_ sin ,oct dt=xiAJ, r - 2 sin _ coj dtr

=x_AT (4.19)

where the carrier frequency fc has been chosen to be some multiple of

half the reciprocal of the pulse period T, fc = _oc/27r = k/2T for some integer

k. The optimum estimate _, of the amplitude of the received signal,
then is

1 /(_+l)r
2.=_-_j_r y(t)%/2 sin _¢t dt (4.20)

and the receiver is simply that illustrated schematically in figure 4.6

_J'_s in _c t

RGURE 4.6--A PAM detector.

dt
x

L_

To determine the signal-to-noise ratio at the output of a PAM detector,

we observe that the output noise power 5 is given by

No [ _ h2(_ ) dv
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• In this case, we have, from equation (4.20),

1 f (,+I)T

_'=_J,r y(t)x/2 sin o:ct dt

(_+l) T= y(t)h[(vW1)T--t] dt (4.21)
Jvr

Hence

h[(v+l)T--t]=_--_TSin o:ct vT<t<(v+l)T

or

h(r) =_-_ sm o:,[(p+ 1) T--r] 0<r<T

and consequently

N No [ r 2 sin 2 _c[(v+l) T-r] . No (4.22)
"=-2Jo _ dr=2a2T

The output signal is that part of ........_n_ uu_v,,_* pr,,,.,.,-_.... ......A by tha input signal
only, so that, replacing y(t) with x/2Ax, sin o:,t, in equation (4.20),

1 f 0,+1) T

S°[(vW a)TI---:_=lrAIj, Ax, g_ sin 2 o:¢t de=x,
(4.23)

The output signal power is defined as

P,,o= lim 2_ f r So2( t ) dr= E[S02] = E IS02[ (v+ 1)T]}
T_. .] --T

(4.24)

The last step follows from the fact that So(t) is assumed to be stationary.

Hence, E[So2(t)] is independent of time and may be evaluated at any

particular instant of time. From equation (4.23) we have

E{ S:[ (v+ 1) T]} = E(x, 2) (4.25)

and, recalling from "Expectation and Independence" in chapter 1 that

E(x,2)= f : x,_p(x,) dx

it is only necessary to know the probability density function of the signal
x, in order to determine the signal power. For purpose of illustration it
will be assumed that
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p(x,) = 2

Otherwise

(4.26)

so that x, is equally likely to assume any value between -a/2 and a/2

(see footnote 7). In this case

1 [ _/2 a2
E(x, 2) =-, x, 2 dx, = _-_ (4.27)aJ-a_

Thus, the o-tput signal-to-noise ratio is

a 2

PAM NH No

2

(4.28)

It may be shown by an analysis similar to that in "Bandwidth" in

chapter 1 that the bandwidth of the PAM signal is proportional to 1/T.

An interesting measure of the effective bandwidth of a signal is afforded

by asking the question: How far in frequency must two channels be

separated if the cross-modulation between any two of them is to be

kept to an insignificant level? Suppose, in fact, that a number of PAM

channels were to be operated simultaneously at the carrier frequencies

col where i= 1, 2,.... Then the effect of the signal in the ith channel on

the output of the jth channel demodulator is simply

f(,+l)r f(,+l) rY_(t)V_ sin o_jt dt= x,(i)2 sin colt sin ¢0jt dt
J_T J,T

F f (_+I)T

cos (_,-_)t dt

-k-f `'+''r dt]j,r cos (_+_oi)t
(4.29)

which is identically zero if _i, wj, and _--_i are all nonzero multiples of

the term 7r/T. Thus, in order to keep the cross-modulation zero, it is

necessary to separate the channels in frequency by an amount f_-fj

= k/2T, for any value of k = 1, 2, . . . . Thus the effective bandwidth of

any channel is just B = 1/2T cps.

7 If this is not the situation, it is often desirable to precondition the signal to render

its distribution in the form of equation (4.26) (cf. eh. 5).
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The noise spectral density is No/2 watts/cps and the average signal

power at the input to the receiver is

LP,=A _ x,_p(x,) dx,=A212 (4.30)

Thus the output signal-to-noise ratio (equation (4.28)) can be expressed

in terms of the input signal-to-noise ratio (S/N)_ as follows:

6 2

(4.31)

2

Note that this is exactly the same relationshi p that was obtained for DSB
and SSB modulation.

PHASE-SHIFT KEYED MODULATION

Another rather common pulse-modulation technique, called phase-

shift keying, is to transmit the signal

• r.. _. _ vq',_t<'(v4-l_T (4.32)%//2 sin _,,_._,j .......

to convey the data x_. Here, of course, 0<x,<2_r so that there is no am-

biguity at the receiver. Thus the phase, rather than the amplitude, con-

veys the information in a phase-shift keyed modulation (PSK) system.

The advantage of this method over PAM rests in the fact that the ampli-

tude of the signal remains constant. This is not an insignificant advantage

in space telemetry, since transmitters which work at a constant amplitude

are considerably more efficient than those which must produce variable

amplitudes.

From "Pulse Modulation Systems and Matched Filtering" in this

chapter, the optimum PSK receiver, since the received signal energy is

now independent of x_, must form the integrals

('+l)ry(t)V_ sin (oJctq-x_) dt (4.33)
T

for all values of 0<x_<2r and select the largest. But this expression

can be written
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f (_+1) T f 0,'-}-1)T

cos z_j, r y(t)_/2 sin _ct dt-t-sin z_j, r y(t)%/_ cos _j dt

=X cos x_-t-Y sin x_ (4.34)

where

and

f 0+1) T

X= J,r _¢_y(t) sin o_j dt

f (,+z) r

Y--J,r V/2y(t) cos oJ,tdt

The maximum of these with respect to x_ must satisfy the condition that

orthat

el (X cos x_TY sin x_) _O
dx_

Y
x_- tan -1 _. (4.35)

Thus the optimum estimate of x, is _, = tan -_ (Y/X) and the optimum
receiver is that depicted in figure 4.7.

r(t)

FIGURE 4.7--A PSK detector.

It is observed that in the absence of noise

y(t) = VI-2A sin (_tWx,)
and
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+l) TX= 2A sin _ct sin (_t-t-x,) dt

f (,+1) T

= A / [cos x_--cos (2_ct-l-x,)] dt
JvT

= A T cos x,

f (v+l) TY= 2A cos _ct sin (_t_x,) dt
J_T

f (,+I) r
= A _ [sin x,-l-sin (2_J-t-x,)] dt

JpT

=AT sin x,

81

where it is again assumed that ¢¢=_k/T for some integer k. Hence

_, = tan_ 1A T sin x_
A T COSx_ = x,

and the estimate of the signal is exact in the absence of noise. The

analysis of the output signal-to-noise ratio for PSK is somewhat more
involved than that for PAM and will not be carried out here. The

results of such an analysis, however, would indicate performance ap-

proximately equal to that of PAM. In addition, it is easily verified that
the same comments concerning the spectrum of a PAM signal as well as

its effective bandwidth occupancy apply equally to a PSK-modulated

signal.

PULSEDURATIONMODULATION

Another rather interesting pulse-modulation scheme is pulse-duration

modulation (PDM). Although there are a number of variations on this

technique, only one PDM system will be discussed here. The data
x_ are normalized so that O<x_<l for all values of v. The modulated

signal then takes the form

vT<t((v-_xv)T=t, l

t = (v-t-x_) T <t < (v+ 1) T)

(4.36)

Since, again, the signal energy is independent of x_, the optimum de-

tector, from "Pulse Modulation Systems and Matched Filtering" in this
chapter, forms the integrals
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Ti f(,+l)Ty(t) 2 sin _ct dt- y(t) 2 sin _ct dt (4.37)"
J tl

for all values of ti where _,T<t_< (_+I)T.

Differentiating equation (4.37) establishes only the rather obvious

condition that the maximum value of t,. satisfies the equation

y(tl) sin _,ti-- 0

Unfortunately, there will, in general, be many values of t_ satisfying

this equation, and a separate integration must be performed for each of

these values. Clearly, such a receiver would generally not be practical.

A practical PDM receiver, however, does result if the value of x, is

quantized. That is, if i/N<x,<(i+l)/N, where i=O, 1, 2,..., N--I, the

value x,= [(i+l)/2]/N is transmitted. Then only the discrete values

of t_=vT+[(i+l)/2](T/N) need be investigated. Further, since

'iW/2y(t) sin dt_Oet
T

= j.r_ V_y(t) sin _t dr+ _ J,_[-1%/_y(t) sin ¢o.t dt (4.38)

the N+ 1 integrals

f"Io = V'2y(t) sin ¢o_tdt
T

f"I_ = @y(t) sin _ct dt i-- 1,..., N- 1 (4.39)
i--I

f (,,+1) TIv-- _¢/'2y(t) sin _ct dt
J tN

can be formed and the maximum over j, where j=O, 1 .... , N-1, of the
summations

i N

I,- I, (4.40)
i--9 i--_+1

used to determine the estimate of the data x,. This system is illustrated
in figure 4.8.

Note that only one integrator is necessary; the various quantities I_ can

be determined, for example, by sampling the output of the integrator at

each instant of time t_ and forming the difference

f t_ dt f t_-iI,= _/'2y(t) sin _,t - %/_y(t) sin oct dt
T d,r

(4.41)
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JvT I

_J_-s in _ct

N

Io -Zli
1

1 N

ZI i -Zli
0 2

2 N

Z li -Z li

0 3

N-1

x
V

FIGURE 4.8--A discrete PDM detector.

The advantage of considering a discrete set of data values rather than a

continuous set is that a simple receiver can be built. If t_ were continuous,

a receiver analogous to that of figure 4.8 could be used by determining the
value of t_, not in advance but by the zero crossings of the signal y(t).

However, there could be quite a large number of zero crossings, and
since this number would vary from pulse to pulse, the, receiver would

necessarily be considerably more complex. In addition, it is dubious that
it would offer much advantage over the one described here.

The output signal-to-noise ratio is again somewhat difficult to derive.

However, when the input signal-to-noise ratio is high, a rather interesting
effect can be observed. The received signal has the form

y(t) = ±_/2A sin _t+n(t) t,<t<t,+l

i=0, 1,...,N-1 (4.42)

where the sign remains the same over the interval in question. The

integral I_ is then

f ti f tl
Ii= :t: 2A sin 2 _ct dr+ v'2n(t) sin _ct dt

J ti--i i-1

(4.43)
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The noise n(t) is white and Gaussian with E[n(t)]=O and E[n(t)n(u)] .

= (No/2)_(t-u). If wc is chosen to be some multiple of it�At where At

=t_--t_-1, then, referring to "Gaussian Statistics" in chapter 1, equa-

tions (1.70) and (1.71), we see that

ftltt, = E(I,) = -4-AAtA- E[n(t)] 2 sin wet dr= :l:Aht
t--!

a_ = E(I, _) -- _

f"-- 2 E[n(t)n(_)] sin _ct sin _cu dt du
i--1

ft_ 2_(t--u) sin w_t sin w_u dt du
2 j t__l

No
[ *_ 2 sin s _t dt =

No

=-2J ',-1 -_- At (see footnote 8)

and

(4.44)

(4.45)

Since n(t) is a Gaussian process, then I_ is a Gaussian random variable

(see "Gaussian Statistics" in ch. 1):

"1 (I,--,,)21 (4.46)[ J

and the probability that I_<0 given that _= +Aht is

Pr(I'<Ol#'=AAt)= V_-_a,l f.o exp [ (I'--tL')21_.j dI,

51 e_z2 / 2dx

A 2 t 1/_1 A
=_{l--erf[(_) ]} (4.47)

Similarly, the probability that I_> 0 given that g_= --AAt is

Pr[I,>Oll_,=--AAt]=l{1--erfL\_o/2 ] JJ (4.48)

s Actually, the integrals Io and IN involve half intervals and both tt_ and a_ s should be

divided by one-half in these cases. However these "end effects" are insignificant for

large values of N and will be neglected here. They could have been eliminated entirely

by a slightly different quantization procedure.



PULSE MODULATION 85

When (A2ht/No/2) is large, it is seen, again referring to "Gaussian Statis-

tics" in chapter 1, that

[-[ A 2AI'_ 1/2"]

erf L_,N---_) j=l

and hence that

Pr[ I , < Olg, = A ht] = Pr[ I ,> O[u, = --A At]-_ 0

Thus, the probability that a positive pulse of length At contributes a

negative quantity at the output of the integrator or, conversely, that a

negative pulse contributes a positive quantity, becomes negligibly small

as (A2At)/(No/2) becomes large. (For practical purposes, this usually

means that (A2At)/(No/2) > 5.) When this happens, an error in reception

almost never occurs. Thus the difference between the received signal

and the data is due solely to the inevitable error in quantizing the con-

tinuous signal x, into one of a discrete set of values. This quantization

error is easily determined. The sign of the transmitted pulse changes at

time t_ for any value of x, satisfying the inequalities i/N <xv < (i+ 1)/N.

if the ul_,,_,_.,.._-'-*-'k"_;_v._¢_._ is flat., p(x,) = 1, where 0 <xv < 1, then x, is equally

likely to have any value in this range. Hence, the expected value of x,

given that the pulse changed sign at time t_ is

(i+l)/NE(x,ltO = x_p(x,[t_) dx, = N dx,
d ilN j ilN

_ ('-+ ½)
N (4.49)

since

In addition

P(x_lt') = {_ (see footnote 9)

i/N < x, < iN14-

Otherwise

a,2= E(x,_lt,) - E2(x,[t,)

['(i+,)/N (i+½) 2 1 (At)2
=NI x, 2 dx, N2 - -- (4.50)j _/N 12N 2 12T 2

The signal variance is

1 1 1

3 4 12

9 Clearly, p(x,]t_) is a constant i/N <x_ < (i+l)/N and zero otherwise. That this

constant is N follows from the fact that the integral of p(xdt_) over all x_ must be

equal to 1.
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Up until now we have been evaluating communication systems in terms

of their signal-to-noise ratios SIN where, with the received waveform

denoted by y(t)=x(t)+n(t), the signal denoted by term x(t), and the

noise denoted by n(t), the signal power S was defined as

1//lim x2(t) dr= <x_(t) >

while the noise power N was determined from <n_(t)>.

Actually, if the signal had had some nonzero average value c, we would

have been interested, not in <x2(t)>, but rather in .,L_j_cj___.r_/,__,-

-- <x2(t):>-c 2, since it is the variation about the average that conveys

information, not the variation about zero. That is, suppose we arbi-

trarily added the constant c' to the signal. This would certainly not
increase the amount of information at the receiver, but the signal power

would be increased by an amount <[x(t)+c']2>- <x2(t)>. Thus, the

definition of the signal-to-noise ratio that we have been using should

properly be expressed as

S <[x(t)-c]_>
N <n2(t) >

where c= <x(t)>. The average value of the noise, of course, is zero,

<n(t)> =0. But, since <[x(t)-c]2> = <x2(t)>-[<x(t)>]_=a2 and

,_n2(t) >--an 2, we have

S = a.__ (4.51)
N _n 2

In the situation at hand, the term n(t) at the output of the detector is

less explicit. But clearly, if the desired signal is x, and the quantized

signal X_q is received, then the "noise" is x_-x_q and the noise variance is

(4.52)

(see footnote 10) while the signal variance remains

E(x, _) - E 2(x,) = a, 2 (4.53)

Thus the signal-to-noise ratio in this case becomes

_0 This, of course, assumes that (At_)/(No/2) is large enough so that the probability

of transmitting x,_ and receiving x,q' where x,q' _x,_ is very small.
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a,2 \At/ (4.54)

A_ht

so long as(N_ is large.
\z/

It can be shown, by an argument identical to that used in the case

of PAM, that the effective bandwidth per PDM channel is B = 1/2At cps.

Since we are sending one sample of data every T seconds, the same in-

formation could be transmitted with a PAM (or SSB) bandwidth of

Bo _- 1/2T cps. The bandwidth expansion/_ using PDM is defined as the

ratio of the amount of bandwidth necessary for PDM transmission to that

which would be needed with PAM transmission. Consequently

and hence

B T

_=_=-_ (4.55)

_)pD_ = (4.56)

(approximately, so long as A2>5NoB). As with FM, the output signal-

to-noise ratio increases in proportion to the expansion in bandwidth.

Like FM, PDM also exhibits a threshold effec_ reflected in the fact

that when the predetection signal-to-noise ratio A_/NoB=(i/N)

(A_/NoBo) is too small, the probability of mistaking a positive pulse

for a negative one, and vice versa, becomes large enough to degrade

the performance significantly.

PULSE CODE MODULATION (PCM)

In the discussion of PDM it was found useful to quantize the data

before transmission. Not only was the receiver much easier to build

when the signal could have one of only a finite number of states, but

when the signal-to-noise ratio became only moderately large the channel

itself contributed negligible error, the primary error being only that

of quantization. However, a method for obtaining the same performance

at a considerably smaller expenditure of bandwidth suggests itself

after the following consideration: Suppose the quantized PDM signal

could have one of four states. Then, letting a 1 represent a positive

pulse and a 0 a negative pulse, the four PDM signals are represented

by the following configurations:
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1000

1100

1110

1111 _.57)

But, just as it is more efficient to use a number system in which the

position of a symbol as well as its form contributes to its value, it is

useful to consider a communication system in which the same rules

apply. In particular, if only two symbols are available, we can always

represent the four symbols binarily as

00

01

10

11 (4.58)

Each state now needs only one-half as many symbols to represent it.

Clearly, if there are N states requiring N PDM binary symbols, only

log2 N (or the smallest integer equal to or larger than log2 N) PCM

symbols are needed. (Of course, bases other than the binary could be

employed, but binary systems possess certain distinct advantages and

are by far the most commonly used.)

The analysis of this system parallels that of the PDM scheme. Sup-

pose the signal is quantized into N levels where N is assumed to be a

power of 2. Then, as before, when the signal-to-noise ratio is such

that it is very unlikely that a positive pulse will be mistaken for a negative

one or conversely, the primary contributor to the mean squared error

at the receiver is the quantization error:

1
0" n 2 _ ---

12N 2

where, again, the signal is assumed to vary between 0 and 1.
the signal variance remains

O-m2__-- !

12

Similarly,
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and the signal-to-noise ratio is

S_ _N _ (4.59)
NJPDM--

As has been observed in the case of PDM and can be verified here, the

effective bandwidth of a modulated signal consisting of sinusoidal

pulses which can change amplitude only every At seconds is

1
Beef =-- (4.60)

2ht

But here At=T/log_ N and, consequently, the bandwidth expansion

factor is given by
Be. T
-- = _ = logs Nfl= B0

Thus

S_ -- N _= 22a (4.61)N/PcM

and the output signal-to-noise ratio increases not as _') but exponentially

with _.

Again, as in PDM, this analysis is true only if the probability of

mistaking a positive symbol for a negative symbol, and conversely is

very small. In fact, this requirement is considerably more important

in the case of PCM. While the signal symbolically represented by

might be received as

1111

0111

it still remains more like the transmitted signal than any of the other

possible signals and no error is made. In contrast, if 1 1 is transmitted
and 1 0 received in a PCM system, an error has been made. This is

counteracted by the fact that the probability of making such an error

is considerably less (for the same parameters) by using PCM than it is

by using PDM because, for both systems, the probability of an error
of this kind is

P =- {1-erfr(t_kN jA  'Y' l\jj (4.62)

which is a monotonically decreasing function of At. But

T
(_t)pcM = _ = loNN (At)a, DM
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For large values of N, this advantage more than counteracts the above-

mentioned disadvantage.

CODING AND WAVEFORM SELECTION

The last sections demonstrated the superior performance of quantized
PDM and PCM systems. It was observed that the cost of an erronous

reception of a pulse (or a symbol, as they are often denoted) can be

high. Thus, the number of quantization levels, and hence the quantiza-
tion error, is limited by the fact that At cannot be made too small or the

symbol error probability becomes too great. Several techniques are

available for decreasing the significance of symbol errors, and hence

increasing the number of possible quantization levels. One of these

is the use of error-correcting and error-detecting codes.

The subject of coding has received a large amount of attention in

the literature in the past decade and is considerably too complex to be

covered in any detail here. The principle of coding, however, is quite

simple. Since one symbol error occurs relatively infrequently, two
symbol errors will occur even more rarely, three still less often, etc.

Thus, if instead of the set of symbols (eq. (4.58)), the symbols

000

011

101

1 1 0 (4.63)

were transmitted, it will be observed that one symbol error no longer

causes an error in reception. If, for example, the sequence 0 0 1 is

received, it is known that an error has occurred. It is not known which

sequence was transmitted, but, at least, the error has been detected.

Such a code is called an error-detecting code. If this code is altered

further by adding two more symbols to each sequence in the following
manner

00000

01101

10110

11011 (4._)
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it can be verified that, if only one symbol error is made, the resulting

sequence is more like the original sequence than any other. If, for

example, 0 0 0 0 0 is transmitted and one error is made so that 0 0 1 0 0

is received, it is seen that 0 0 1 0 0 differs from the first sequence in only

one symbol, from the second in two, from the third in two, and from the

fourth in five. Since one symbol error is made more likely than two or

five, the most logical decision is that the transmitted sequence was

0 0 0 0 0. Then single errors can be corrected and codes which do this

are called single-error correcting codes. These codes were achieved by

adding redundant symbols to the original information symbols. By

adding further redundancy, higher error-correcting properties can be
obtained.

Note, however, that it is not necessarily true that this procedure does

indeed decrease the probability of making a sequence error at the receiver.

This is because, in order to keep the transmission rate the same, three and

five symbols must be sent, using the codes (4.63) and (4.64), respectively,

in the same time that two symbols would be sent using the code (4.58).

Thus the time per symbol has dropped by a factor of 2/3 and 2/5, re-

spectively, ,,:- ,h_,,_÷_..v..... ......._._,q Since,. from equation (4.62), the probability

of a symbol error is a function of the symbol time, symbol errors are more

likely using the codes (4.63) and (4.64). Thus, while error-detecting and

error-correcting codes make symbol errors less costly, they also make them

more probable. Whether there is a net gain or loss depends upon the

code and upon the system parameters.

A second technique for decreasing the probability of an error at the

receiver lies in the judicious selection of waveforms to represent the

various signals. In the situation under consideration, the data source

submits to the transmitter a signal which assumes one of N amplitudes
and allows the transmitter T seconds to transmit it. It is desired to send

this information as reliably as possible; i.e., to minimize the probability

that the receiver interprets its input as something other than that which

was transmitted. Intuitively, at least, the waveforms which represent

the different amplitudes should look as different from each other as

possible.

But what do we mean by "looking different from each other"? In

"Spectra and Autocorrelation" in chapter 1, we introduced the concept of
correlation as the measure of "likeness." Consider the normalized cross-

correlation coe._cient p12between two time functions yl(t) and y2(t), where

pl_ is defined by (cf. "Expectation and Independence" in ch. 1):

_(0)

P'_= [_,,(0)_2(o)11_
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It may be shown that the two waveforms can be considered identical if

their cross-correlation p12 is one. The smaller this normalized cross-

correlation, the more dissimilar the waveforms are, until, when p,2= -1,

the two waveforms are antipodal. Thus, one measure of similarity is
the cross-correlation coefficient. It can, in fact, be shown that this is the

measure of concern in the problem at hand.

So we have restated the problem as follows: We wish to find a mapping

from the N possible signal amplitudes to N waveforms such that the
cross-correlation between any two of these waveforms is as small as

possible. The next three sections discuss some of the waveforms which

may profitably be used for this purpose. Before proceeding, however,

it is useful to obtain a standard whereby any N-level pulse-communication
system may be judged.

Presumably, it is the maximum cross-correlation coefficient which will

do the most damage, since this is the measure of the similarity of the

two waveforms most likely to be mistaken for each other. Thus, we
might ask, what is the minimum value this maximum normalized cross-

correlation coefficient can obtain? Suppose we have N waveforms:

x,(t), x_(t),..., xN(t).

Then

rx,(t)xi(t) dt
P_i = (4.65)

The average cross-correlation is clearly

1

P'_ =N(N- 1) _,-, _.., p,i (4.66)

since there are N(N- 1) cross-correlation coefficients p_j, where i_j. The

p, terms are all equal to one and are excluded from the average because

we are interested in the similarity between two different waveforms, not
the trivial question of how similar a waveform is to itself. But

P""=max P"i->P'"= 1 [ _'_'_ ],i N(N--I_) ,-, _-, p_i-N
_i

(4.67)

where the condition that i_j has been replaced by subtracting the total

contribution of the p, terms from the double summation. Substituting
from equation (4.65) and interchanging the order of integration and
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summation, we find that

1 _ _ r

N(N- 1) ,-, \[f0r x,_(t) dt] 'hI

_-1,_, dtl*'  dt-NJ (4.68)

The integral may then be written as

.t (4.69)

and since the integrand is never negative, the integral is at least zero.
Then

1
pm_=>p_,e> -_V-- 1 (4.70)

We shall use this relationship as a standard for the evaluation of the sets

of waveforms to be discussed in the succeeding sections.

FREQUENCY SHIFT KEYING (FSK)

Suppose, for the moment, that the signal x, is not quantized but again

assumes all values 0<x,< 1. A frequency shift keyed (FSK) communica-

tion system simply transmits a sinusoid with the frequency ax, to

represent the signal x,. The received signal is then

y(t)=_A sin (o_,+ax,)t+n(t) vT<t<(r+l)T (4.71)

and the optimum receiver (cf. "Pulse Modulation Systems and Matched

Filtering" in this chapter) involves the determination of the expression

A f(_+l)T

/(,+l)r _v/2Y(t) sin (_o+ax,)t dt-_J,r sin 2 (_c+ax,)t dt
JvT

(4.72)

Differentiating this with respect to x, unfortunately does not establish

an easily mechanized system, nor does it eliminate the necessity of deter-
mining the expression (4.72) explicitly for all values of x,. Therefore,

for practical purposes, this technique too is restricted to quantised

signals.

Suppose therefore that x, is equally likely to assume any of the N

values, 0, 1/(N-1), 2/(N-1),... 1, and that
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and

(N- 1)k_r
a=

T

so that ¢_+ax,=k3f/T for some integer k3 regardless of the value of
x,. Then consider the correlation between two signals %/2 sin (_,_-ax_)t

and V_ sin (o_,q-axi)t where x,=i/(N-1) and xi=j/(N-1):

r2 sin (o,,+ax_)t sin (_,-baxi)t dt

If 71/21-fT 7,/2P"= r'V/2 sin 2 (_,+axi)tJ LJo _ sin_ (o_,+axy)tJ

afo 1/o =-_ cos a(xi-xs)t dt--_ cos (2oJcWax_Waxi)t dt

i=j (4.73)

This set of waveforms, therefore, compares favorably with the optimum

since for an optimum set

1
max p__>----_0

,,; N- 1

for large N. (Other frequency displacements are, of course, possible,

but neither the average nor the maximum cross-correlation can be

significantly decreased.) Then the integrals

(,+x)r sin _ (o_,+ax,)t dt
T

are constant and independent of x, and the optimum decision is to

select the largest over xi=O, 1/(N-1), 2/(N-1), . . . 1, of the integrals

f ()+1) TZ_= y(t)%/_ sin (o_q-ax,)t dt (4.74)
dvr
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Since y(t)= _,/2A sin (_c-l-ax,)t+n(t)

f (v-t-l) T

E(Z_) = J,r 2A sin (_¢-t-ax,)t sin (_c-t-ax_)t dt

-t-%/" 2 f (,+l)z E[n(t)] sin (wc-t-ax_)t dt
j,r

-_=ATp_'=( 0AT xi=x,X_X"

and

No nq_ 2

_? = E(Z,_) - E_(Z_)=-_ 1= _o

(4.75)

(4.76)

Again, since n(t) is a Gaussian random process, the variables Z_

are Gaussianly distributed. It can be shown that the probability of

a correct decision at the receiver is just the product of the probabilities

that all the variables Z_, i_v, are less than the variable Z,. For a

fixed value of Z,, this is

where

Pr(Z,<Z, li_v , Z,)

=f_:'p(Zo)dZof_:'p(Zx)dZ,...f2"p(zN_,)dZN_,(4.77)

E (z'-"')q= i--L- (_z,_ (4.7s)P(Z')-_c/--_a, exp _ J _¢/2TaoeXpk, 2ao _]

and

Pr[Z,<Z_l i_v] = f__ Pr[Z,<Z, l i_v, Z,]p(Z,) dZ,

=f_:[f_i'p(zo)dzolN-_p(Z,) dZ,

1 *, [- fz, / ZoO\ "]N--I
(2_)N%0Nf-.- [J_. exp1_-_._)dZoJ

1 f'[f',+'""(_o",''' /wo'x .... r'-'
--(2.)N/,,_,_t.a_® exp L--2--) u" °_

{A_r_ (4.79)
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where the substitutions Wo = Zo/ao and W, = (Z,- A T) / ao have been made.

Clearly the probability of a correct decision is a function of N and

A 2T/ (No/2) only.
The effective bandwidth occupancy of orthogonal n FSK is obviously

N/2T, since from equation (4.73) all frequencies separated by an amount
1/2T can be used without mutual interference and N, such frequencies

are needed for an N-level system. Thus the bandwidth occupancy of

FSK and PDM are the same. The probability of an error is con-

siderably greater with the latter system, however.
A slight variation on the modulation scheme described above is to

use not only the signals xdt)= _/2A sin (_+ax_)t, but also their nega-

tives, -xdt)= -v_A sin (_c+ax,)t. (See footnote 12.) Clearly, this

does not increase the bandwidth requirement, yet it does double the

number of available signals. The detector remains unchanged, except
that the decision now involves the selection of the largest of the quantities

The probability of aIZ_I where Zi is defined as in equation (4.72).
correct decision changes slightly and is given by

Pc = Pr[]Z,I < Z,li _ p]

f[Z= z, p(Zo) dZ0.j (N/=)-I p(Z,)
1 dZ,

-- 1.L f=V fw+[a'T/(N°/2)]t"exp{--Wj}dWo] (N/',-'(2_')_/Uo L./-_+ t.,,'r/(N,,_,,,,

W =
exp (---_-) dW

(A'r 
-- V_ \No�2]

(4.80)

Note that here in order to have N signals, we need only N/2 values of

xi, since for each x_ there are two possible waveforms. Therefore,

for the same number of signals, biorthogonal codes require only one-half

the bandwidth of orthogonal codes.

Equations (4.79) and (4.80) will be further investigated lzter in this

chapter.

n Waveforms satisfying the property that their cross-corr,dation coefficients are all

identically zero are called orthogonal, and the ensemble of waveforms is called an

orthogonal code.
_2 This set of waveforms can easily be shown to have the property that

o_i = i_j and xdt) _ -xi(t)
- x_(t) = -xi(t)

The ensemble of these waveforms is called a biorthogonal code. Note that

p._. =- 1/(M- 1), where M is the number of waveforms, and hence meets the bound

(4.70).
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PULSE POSITION MODULATION (PPM)

Another modulation system which could, in principle, be used to

transmit continuous data, but for practical purposes is limited to quan-

tized data, is pulse position modulation. This modulation scheme

consists of transmitting a pulsed sinusoid of duration T/N seconds,

the position of which conveys the information. In the quantized case

only N nonoverlapping pulse positions are allowed. The envelopes

of the pulses are shown in figure 4.9 for the case in which N= 4.

T t

I

7"

I I ,
7" t

7" t

FIGURE 4.9--PPM four-level waveforms.

It will be observed that since no two different waveforms are nonzero

at the same instant of time, the cross-correlation coefficient p_j is identi-

cally zero for all i_j (see eq. (4.65)). Since the waveforms may be
denoted

iT 1 T

_/2A' sin o_ctI'N <t<(i+ )_

(0 Otherwise

for each i=O, 1, . .., N-1, it is seen that each represents an average

power of (A')2T/N (where it is again assumed that ooc=krN/T for

some integer k). Thus, letting (A')2=A2N, we have exactly the same
situation as that encountered in the investigation of FSK and the

same conclusions apply. The bandwidth occupancy is again N/2T

and the error probability expression (4.79) still applies. The differ-

ence between the two systems, of course, lies in their instrumentation
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and in the fact that the peak power requirements of PPM is N times

as great as that for FSK if they are to exhibit the same average power

and hence the same performance.

FURTHER EXCHANGE OF BANDWIDTH FOR RELIABILITY

The orthogonal codes of the last two sections have demonstrated

a method for decreasing the probability of an error at the receiver.

Since N-level PCM requires a bandwidth of log2 N/2T cps while the

orthogonal signal used an N/2T cps bandwidth, it is seen that the in-
crease in reliability is at the cost of an N/logs N increase in bandwidth.

As the astute reader may have already observed, however, there is

no imperative reason why the number of levels of quantization N must
be equal to the number of waveforms to be used. That is, suppose the

data are quantized and each sample is represented as a sequence of
log2 N binary digits, as in PCM. (It is convenient, although not necessary,

to limit the discussion to binary digits.) Then, so far as the transmitter

is concerned, the input is a sequence of binary digits. The fact that

they may be grouped into blocks of log2 N digits to represent the sample

does not necessarily affect the way in which they should be transmitted.

Each m consecutive digit may be transmitted as one of M = 2m wave-
forms (tl_ere are 2m different sequences of m binary digits), where M

may be greater or less than N. The receiver decides which of the M

waveforms was transmitted, reconstructs the corresponding m digits

and thereby presents the original sequence at the output. The user

of the information then proceeds to divide the received sequence into

the blocks of n digits corresponding to the data. It is often quite in-

efficient to require that M = N since N may vary from one data source

to another. If M were always equal to N, the communication system

might have to be different for each source. It will be seen in the next

chapter, in fact, that one of the advantages of digital operation is that

the telemetry system can be made relatively independent of the data.

If, then, N is fixed, it is of interest to determine the effect of increasing

M. To determine this, we observe that, once both the sampling rate

T and N, and hence n--logs N, have been determined, the amount of

time available for transmitting each binary digit (or bit) of information
is T/logs N = Tb. If m bits are to be transmitted as one waveform, each

such waveform must last exactly mTb=(log_ M)T_ seconds. The

bandwidth occupancy for M signal orthogonal codes is

2Tw = _ =N logs M 2TN



PULSE MODULATION 99

where T_ is the time available per waveform, and TN is the time available

per waveform when M--N. Thus the bandwidth expansion is propor-

tional to M/log2 M and the ratio of the bandwidth required for an arbi-

trary m bit grouping to that necessary if each data signal were to be

transmitted separately with an orthogonal code is M log_ N/N log_ M.

To see the advantages of using larger values of M, the error probability
PE =[1-PM(A2Tb/No)] is plotted in figure 4.10 for various values of

m = log_ M as a function of A 2T _/No, rather than A _T/(No/2) as in equa-

tion (4.79), since the time per bit Tb is the quantity fixed by the data re-
quirements rather than the time per waveform. It is seen that it is

always advantageous to increase the value of M. Figure 4.11 presents

the analogous results for biorthogonal codes; P_'= [1--QM(A2Tb/No)].

It is seen that the latter codes are always superior to the former, but that

this advantage is insignificant for M _ 3. Note that for the case M = 2,

Ps' is just the error probability given by equations (4.47) and (4.48) for

PDM and PCM, since there, too, there were just two antipodal signals.

In the PDM case, Tb becomes At= T/M; for PCM, Tb---- T/log2 M.

SYNCHRONIZATION

It will be noted that all of the systems analyzed have depended upon

a common time reference (i.e., synchronization) for the transmitter and

receiver. In particular, it was assumed that it is possible to generate

a sinusoid at the receiver which has the exact phase and frequency of

the received carrier. This information is usually called carrier syn-

chronization. Further, optimum demodulation'depends on the knowledge

of the instants of time in which a waveform begins and ends (i.e., the

instants of time vT, v=0, 1, . . .). This is called word or waveform syn-

chronization. Other timing references are often necessary, too. If, for

example, the waveform conveys m bits of information where each sample

is quantized to N = 2" levels, as in the previous section, the data user
must have available synchronization information which will enable him to

separate the received sequence of bits into the right blocks of n bits. In

addition, if, as is almost always the case, numerous data sources are to be

multiplexed together, the user must be able to identify which part of the

data corresponds to which source. This is referred to as frame syn-
chronization.

Numerous synchronization techniques have been explored. One of

the most common and straightforward methods involves the use of a

phase-locked loop to track an unmodulated sinusoid, or other periodic

signal, the phase and frequency of which convey the necessary timing.

Further discussion of the synchronization problems is presented in

chapter 6 in which the related problem of ranging is investigated.
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CHAPTER 5

Data Compression

ALL OF OUR EFFORTS in investigating methods for improving the efficiency
of long-distance communication have been concerned with the communi-

cation system itself. But there is another area in which great improve-

ments can theoretically be made; viz, in the preprocessing of the data

which are to be communicated. The sampling theorem states that the

data must be sampled at least every T = 1/2W seconds. Unfortunately,

W is not generally known for the data sources being monitored. Indeed,

it is precisely the uncertainty and the difficulty in predicting the behavior

of the sources that make them worthwhile to observe. Thus, W, and

therefore the sample rate T, must be estimated, and to insure that

importan_ info_ation is not lost, they must be conservatively estimated

with the result that a source is usually sampled considerably more rapidly

than it would ideally be. In addition, even if W were known and the

sampling rate were optimally determined, successive samples would, in

general, be rather highly dependent. That is, much of the information

contained in the (i+ 1)th sample would have been predictable from the

ith, (i-1)th, (i-2)th sa_m_ples. If these samples themselves are trans-

mitted, much effort is wasted in sending redundant information. The
effects of redundancy are readily observed in written text: CNSDR FR

XMPL THS SNTNC. Few will find any difficulty in reading that

array of letters even though more than 30 percent of the symbols have

been deleted. That much greater elimination of redundancy is possible

is evidenced by the various shorthand and speedwriting techniques which

have been developed. Any telemetry system that transmitted con-

ventionally written text would be sending much redundant information

and thereby using its power inefficiently.

The suggestion then is that shorthand techniques should be used

aboard a spacecraft so only essential information is transmitted. Since

fewer symbols would be sent, more time could be spent per symbol,

thereby decreasing the probability of an error at the receiver and hence

increasing the reliability of the system.

This argument for the removal of redundancy seems at variance with

the discussion of the previous chapter in which it was stated that, at

least under certain conditions, redundant symbols could be advan-
tageously added to reduce the likelihood of an error at the receiver. The

103
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difference in the two situations is in the fact that the added redundancy,
can be carefully selected for the maximum improvement, whereas the

naturally occurring redundancy, while providing some error-correcting

ability, is far from efficient. Suppose, for example that the following

sequence of temperatures were received: 250.031 °, 250.033 °, 250.035 °,

350.033 °, 250.034 ° .... The error in the most significant position of the

fourth reading is easily corrected, yet an error in the least significant

position would probably pass unnoticed. As an alternative method,

suppose only the first reading were sent followed by the incremental

temperature changes, each repeated three times as follows: 250.031 °,

+2 +2 +2, +2 +2 42, -2 -2 W2, 41 42 41, .... The same num-

ber of symbols are involved in both cases (actually, the sign is one of only

2 symbols, rather than 1 of i0), yet the error in the least significant

position of the fourth and fifth readings is readily discernible. In the

latter case, the natural redundancy was replaced with controlled redun-

dancy, thereby increasing the correctability of small errors. This system

is not necessarily practical. Changes of more than 0.009 ° cannot be indi-

cated and in this format, if an error does occur, all succeeding readings

will be in error, since the incremental changes are transmitted rather than

the readings themselves. Nevertheless, it hopefully does illustrate the

point. This chapter will discuss several techniques for the elimination

of redundancy or, as it is variously called, data compression or data

compaction.

Nth DIFFERENCES

In the example of the preceding section, the incremental changes, or

first differences, of the data samples were transmitted rather than the

samples themselves. This method may be extended by transmitting the

second differences (i.e., the first differences of the first differences) or

third differences, etc. The advantage of this procedure, of course, de-

pends upon the data itself. If, for example, the data are increasing, or

decreasing, nearly linearly x, _-.a4bt, then the first differences are nearly

constant, the second differences are nearly all zero. Transmission of the

second differences in this case would generally require no more than one

symbol. In general, if the data are varying approximately as an

(n- 1)th polynomial in time, x, = a_Wa2t4.... 4a,t"-l, the nth differences

are nearly constant and may be transmitted by a very few symbols. It

will be observed that in order to reconstruct the original data from the

nth differences, the first n data samples (or their equivalent) must also be

transmitted. For example, if third differences are transmitted, it is

seen by referring to table 5.1 that all the data samples can be recon-
structed if either the underlined or the bracketed information is trans-

mitted.
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TABLE 5.1uA Third Difference Data Compression Scheme

105

Samples

[x_]

X2

X3

X4

X6

X6

1st differences

[Xl--g2]

X2--Xs

ga--x4

ga--X5

g_--X6

2d differences

[xl-2x2+xsJ

x 2 -- 2x3 -t-x 4

x,--2x4-l-x_

x,-2xs+xe

3d differences

[Xl --3X2-_-3Z3--X4]

[X2--3Xa"}'3X4 --XsI

[X3--3X4"}'3Xs--X_]

The disadvantages of the nth differences scheme are apparent. First,

because of the tendency of errors to propagate as observed earlier, the

process must be periodically truncated and begun again. But a more

serious problem is that it is seldom possible to predict that the data will

closely approximate an nth order polynomial for any particular value of
n. Because the data frequently have a constant nonzero mean, and

because the data must generally be sampled too often in order to insure

that no information is lost, the first-difference schemes are sometimes

practical, but seldom are higher order difference schemes used.

RUN-LENGTH ENCODING

It has been observed that, because of the lack of knowledge concerning

the bandwidth of the data sources, the data must generally be sampled

too often. The redundancy can be considerably reduced by taking the

first differences of the samples. Even so, however, because the data band-

width is difficult to predict, it is not known in advance how different

successive samples will be. Thus, it is not known how many symbols

should be allowed for each first difference; that is, will two successive

samples most likely differ only in the least significant position or the

two least significant positions, or will they sometimes differ in all posi-

tions? Presumably, all of these situations will occur at various times.

But if the first differences demand nearly as many symbols as did the

original samples, there is little advantage in taking first differences.

One method for partially overcoming this difficulty is by the technique

of run-length encoding. Suppose the data samples are quantized and

represented by binary digits. The first differences are also binary

digits, but since presumably two successive samples do not usually differ

significantly, the first differences will consist mainly of zeros, particularly
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in the most significant positions. The run-length encoding scheme.

takes advantage of this fact by transmitting, not the first differences

themselves but rather the spacings between successive "ones" in the

binary sequence representing these first differences. Thus suppose the

data samplesare01011101, 01011100,01011011,01011011,

01011100..., where the first digit represents the sign of the sample.

The first differences are then ... 00000001, 00000001, 0000

0000, 1000001, ... and the run-length code, obtained by counting

the spacing between successive ones in the first-difference sequences

and representing the spacings in binary form, is 111, 111, 1000,

110, .... The number of digits has thereby been reduced from 32 to

13 without sacrificing the ability to transmit an 8-digit first difference if

necessary. This example is somewhat misleading, since we have ignored

the necessity of providing the commas in the run-length encoded se-
quence. One not particularly efficient method for overcoming this

difficulty is to keep the encoded subsequence length constant. That is,

suppose we divide the code into groups of three digits and constrain it so
that no run of zeros greater than six can be represented by one set

of three digits. If the binary number 7 is transmitted, the sequence

immediately following it is to be added to it to determine the distance

between successive ones in the original sequence. Thus, if the distance

between successive ones is 6, the sequence 110 is transmitted; 7 is

represented by 111,000; 8 by 111, 001; 13 by 111, 110; 14 by

11 l, 111, 000, etc. The data sequence example used previously is

now encoded as 111000111000111001110, requiring 21

symbols. No special information is needed here to decode this sequence,

however, other than the knowledge of its beginning, since it is always
divided into groups of three. It will be noted that this scheme is not

constrained to be used only in conjunction with the first-differencing

technique. It is applicable whenever long runs of zeros (or l's) occur
frequently in the information to be transmitted.

HUFFMAN CODES

Another method for reducing the average numbers of digits to be

transmitted without sacrificing the ability to transmit all possible

messages lies in the use of Huffman codes. Observe in the example of

the last section that the most commonly occurring first-difference se-

quences are apparently 00000000, 00000001, and 10000001.

In probable descending order of occurrences, the possible remaining

sequences are: 000000010, 100000010, 00000011, 100

00011, 00000100, 10000100, etc. The rationale for the

Huffman encoding process is as follows: The average number of symbols

necessary to represent the data will be reduced by representing the most
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.common sequences by fewer symbols than the less-common sequences.

This is best illustrated by an example. Suppose the sequences

00

01

10

11

occur with the probabilities 1/2, 1/4, 1/8, and 1/8, respectively. If the

sequences themselves are transmitted, the average number of digits per

sequence is, of course, two. But suppose the following identification is
made:

00--* 1

01--.0 1

1 _001

1 1--,0 0 0 (5.1)

Then the average number of symbols transmitted is

1 Pr(O O)-k 2 Pr(O 1)+ 3 Pr(l 0),4- 3 Pr(11)=1.75

not a vast improvement perhaps, but one which becomes considerably
more impressive as the sequence length increases and the difference be-

tween the probability of the most probable sequence and that of the

least probable increases. It may be wondered why the particular identi-

fication of the expression (5.1) was chosen rather than some other. Why,

in particular, were not more of the two-symbol sequences used? The

reason lies in the fact that any random ordering of the symbol sequences

on the right side of the expression (5.1) can be uniquely deciphered.

This follows from the observation that each symbol either ends in a
"1" or contains three zeros. Three consecutive zeros are therefore

recognized as corresponding to the sequence 11, while the end of any

other symbol will be identified by a 1. This is not true for all possible

mappings of the form (5.1). The Huffman coding algorithm, however,

guarantees that such a mapping can always be accomplished. The

optimum mapping depends upon the probabilities of occurrence of the

original sequences. Nevertheless, even if these probabilities are not

known, some saving can generally be effected by mapping those first-

difference sequences corresponding to the least change between successive
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samples onto the shortest symbol sequences, those corresponding to,
greater differences onto longer sequences. This method, like the one of

the previous section, clearly is not restricted to be used only on the first

differences of the data. It is useful whenever the different sequences

which are to be transmitted occur with different probabilities.

THE FLOATING BARRIER TECHNIQUE

Another method for data compression which we shall consider briefly

in this far-from-exhaustive discussion is called the floating barrier scheme.
With this method a quantization level is set and an initial sample is

transmitted. The data arc periodically sampled, as before, but suc-

cessive samples are transmitted only if they differ from the last trans-

mitted sample by more than the predetermined quantization. The
operation of the process is illustrated in figure 5.1. The sampling

interval is At and the quantization'amplitude is q. The transmitted

samples are circled.

i I I I i I I I I } I I I I i I i I l i t i I I i

1.,- At t

FIGURE 5.1--The floating barrier scheme.

It is seen that for this particular example the number of samples which

must be transmitted is reduced from 27 to 13, yet the signal is always

known to be within ±q/2 of the sample points.

It is not sufficient here just to send the samples. Since every sample

is not transmitted, it is also necessary to provide the number of samples

which were omitted between successive transmitted samples if it is to

be possible to reconstruct the original signal. This, of course, some-

what decreases the savings in the number of digits which must be
transmitted.
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TELEVISION COMPRESSION

Before leaving the subject of data compression, it is well to consider

one case in which some rather impressive savings can be made; namely,
in the transmission of video information. It has been verified that the

intensity of the light representing a television picture can be quantized

to only eight levels from black to white with little picture degradation.

If there are 32 quantization levels, the eye cannot see the difference

between the quantized picture and one in which a continuum of intensity
levels is allowed. A commercial television picture is quantized spatially

into 512 horizontal lines. If it were further quantized vertically, also

into 512 lines for example, a picture could be represented in digital form

as an array of 512X512 numbers which, assuming eight-level intensity

quantization, could vary from 0 to 7, or in binary form, from 0 0 0 to
1 1 1. Thus it would take 512×512×3=786432 binary digits to

represent one television picture. But, clearly, these digits are not
independent. A black spot is likely to be surrounded by black spots,

a white spot by white spots. Furthermore, on the relatively rare oc-
casions in which two adjacent spots do differ, they most generally differ

by only one intensity level. This dependence exists, of course, not
only spatially but temporally if successive pictures of the same object

are transmitted, and not only between adjacent symbols but over a
considerably greater distance. Clearly, then, there is room for a vast

reduction in the amount of data which actually must be transmitted.

By what factor the data may be compressed and by what techniques

it can be accomplished depends to a large degree on the assumptions

made about what is being observed. Reductions by a factor of a hundred

or more in the number of bits necessary to represent a picture have

been calculated for some special situations.

DESTRUCTIVE COMPACTION

The methods of data compression we have considered up to now are
sometimes referred to as nondestructive data compression techniques.

All the information from the source is to be transmitted; only redundancy

is to be removed. Often, however, the user is not interested in all

the available information. Perhaps it is only the maximum and mini-

mum temperatures of some device, for example, that are of interest.

If this is the case, it is certainly wasteful to send the complete set of

temperature readings. It is relatively easy to determine the extremes

on board the spacecraft and to send those readings only. Similarly,

if it is desired to know only the statistical distribution of the counts from

a Geiger counter, it is certainly not efficient to transmit a complete

record of the number of counts per second. Rather, a data-reducing
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mechanism aboard the vehicle should be used to process the information

to determine the desired histogram which can then be transmitted.

This sort of data reduction is called destructive data compression,
since not all of the information provided by the source is used. The

percentage of savings can be extremely high for this kind of data com-

pression for cases in which the user needs only a quite specific subset
of the information which could be provided. As an extreme case,

suppose it were necessary to know only the average Geiger-counter
reading over a period of 10 hours. The amount of transmitted data

could be reduced by a factor of 36 000 by sending only this average

rather than sending, for example, a reading every second.

The limitation of this procedure, howcver, lies in the fact that the
user seldom knows what aspect of the data will be useful to him before

he sees it. He is generally reluctant to allow any information to be
destroyed for fear of missing some important but unsuspected ob-
servation.

SUMMARY AND CONCLUSIONS

Numerous methods have been investigated for the elimination of

redundancy in data which are to be telemetered. Among them are
included:

(1) The nth difference method whereby the data samples themselves

are not transmitted, but rather their first, second, or higher order
differences.

(2) The process of run-length encoding in which the presumed pre-

dominance of zeros in the data (or in their first or higher order

differences) is used to reduce the number of symbols trans-
mitted.

(3) Huffman encoding which relies upon the generally valid as-

sumption that some data samples (or commonly, data-sample

first differences) occur more frequently than others.

(4) The floating barrier technique which transmits samples only

when they are significantly different from the last transmitted
sample.

(5) Destructive compression techniques.

The amount of reduction in the transmitted data afforded by com-

paction varies widely from source to source. Compaction ratios as high

as a thousand or more are possible with nondestructive methods; de-

structive compression ratios are almost unlimited depending upon the

amount of information actually needed.

Each of the methods discussed involves several difficulties. One of

the more serious is the tendency of errors to propagate. In order that

(nondestructive) data compression be significant, a considerable amount
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• of statistical information concerning the source ,s must be available

(information which is generally not entirely available when applied to

spacecraft sources, since each experiment encounters rather unpredictable

situations). This, coupled with the fact that data compaction equipment

considerably complicates the spacecraft electronics, 14 has in the past

limited data compaction efforts. Nevertheless, as data-handling capa-

bilities of spacecraft are to be significantly increased, data compression

techniques will become more and more attractive.

_* This fact has given considerable impetus to the investigation of self-adaptive data

compression schemes which have the ability to vary in accordance with the source
statistics which are estimated on board the spacecraft.

1, All of the above techniques, for example, are more effective when the data are

changing slowly than when the data are rapidly changing. Thus the data rates will

vary depending upon the sources. Since the transmitter must generally operate at a

fixed rate, buffering or temporary storage facilities must be provided.



CHAPTER 6

Spacecraft Tracking

THE PROBLEM OF TRACKING or keeping a running record of the position

and velocity of a spacecraft is not generally classified as a telemetry

problem. The word "telemetry" usually implies the transmission of

information through space from one position to another. Yet, space-

craft tracking involves the same equipment and many of the same tech-

niques as does telemetry; it logically falls under the study of telemetry

systems.

Tracking can be accomplished with one antenna or several. If two

or more antennas are involved, it is theoretically possible to obtain all

information concerning the position of the vehicle by pointing all the

antennas at it and observing their respective orientations. The antennas

may "see" the vehicle either from its radio transmission or by its re-

flection of radar signals from the ground. This technique suffers from

two disadvantages. First, it does require two or more antennas suitably

placed, with a means of communicating to a common point the orienta-

tions of each antenna, in order to determine the position of the object

being observed. And second, it is difficult to obtain the desired ac-

curacy when the spacecraft is fairly distant from the earth. Even a
0.01 ° error in the orientation of each of the antennas can result in a

sizable error in the estimate of the position of the spacecraft as shown in

figure 6.1. Since a successful mission strongly depends upon the ability

to place the spacecraft on the desired trajectory, which in turn depends

upon the precision with which its position can be measured, more precise
methods must be considered.

Since, as seen in figure 6.1, the distance from the earth, in particular,

is subject to large ambiguities when it is determined from triangulation, it

is apparent that another means of determining this distance or range

would be useful. Such a technique, long used in conjunction with con-

ventional radar, is to transmit a narrow pulse toward the vehicle and

measure the time which elapses before the echo returns. Since these
time delays can be measured electronically to a very high precision, the

distance can be determined quite accurately. The ultimate limitation

in measuring distance by this method lies in the precision with which the

velocity of electromagnetic radiation is known.

113
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Range ambiguity

j Angular uncertainties

FIGURE 6.1DRange arnblgulty In trlangulatloi_.

Several practical improvements can be made on this technique of

ranging. In order to understand these improvements, it is necessary to

consider more precisely how ranging information is extracted from a
reflected pulse train.

PULSED RADAR

In chapter 4 we considered, in some detail, the structure of matched

filter detectors. It was argued that the optimum detector for estimating

which of the signals x_(t) (i= 1, 2, . . .) was most likely transmitted

when the received signal was y(t) involved the formulation of the integrals

I,= fy(t)x,(t) dt (6.1)

and the selection of the largest of these.

The determination of range involves essentially the same considera-

tions. Here, assuming the transmitted pulse is rectangular

x(t) = ( _/20 B sin w,t

O<t<At

Otherwise (6.2)
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the received signal is one of the continuum of signals

_/2A sin o:,(t--to) to<t<to+At
y,(t)

Otherwise (6.3)

where to can have any value over the range of ambiguity, tl<to<t2.

Thus letting y(t) = ys(t)+n(t) represent the received signal plus noise, the
optimum detector determines the integrals

_o+_t
I(to) =20 y(t)_/2 sin _oc(t--_o) dt (6.4)

for all values of io and selects the largest. We note, again, that since.n(t)

is a Gaussian process with E[n(t)]=O and E[n(t)n(t-4-r)]=(No/2)_(r),
I(io) is a Gaussianly distributed random variable with

_o+a'E[I(_.o)]=2A . sin we(t--to) sin _oc(t-_o) dt
J to

=A[At-- (to--to)] cos o_,(to--io)

2_, (sin (2_o_ht+o_,_o--_octo)--sin (¢o_o--_o_to)t

=AJAr-- (to--to)l cos _o_(to--_o) (6.5)

where it is assumed that to<to<to+At and that o_o=_r/ht. If _o
--At<to<_o

E{I(_o) } =Aiht-- (_o--to)] cos _o_(_o--to)

and hence, in general

E{I(io)} =I A(At-'t°-io')c°s o_c(to--_o) _o--At <to<}oq-At

[o Otherwise (6.6)

In addition, it is easily verified that

¢j = S[P(_o)] -- E_[I(_o)]

=No/2At (6.7)

The expected value of the integrator output is illustrated in figure 6.2

as a function of the time delay estimate i0.
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A

FIGURE 6.2--Pulse-matched-filter output.

The case in which t0_t0 should be distinguishable, with a prescribed

reliability, from all other competitors. This, in turn, puts a certain

requirement upon the signal-to-noise ratio A2At/(No/2). To be more
specific, suppose that the requirements are to be able to distinguish

correctly between the cases in which _0=t0 and _0=t0A-At with some

specified small error probability. Since I(to) and I(to-l-At) are both
Gaussian random variables with

E[I(to)l= A At

E[I(to+At)]=O
and

E[P (t o)]-- E _[I (to)] = E[I: (to-4-At)] -- E 2[I (to A- At)]

= No/2ht

this is identical to the situation in which a two-word orthogonal code set

is used in a communication system ("Frequency Shift Keying" and

"Further Exchange of Bandwidth for Reliability" in ch. 4). That is, the

probability of mistaking I(to-I-ht) for I(to) is just that of transmitting one

of two orthogonal code words and making an error in identifying it at the

receiver, assuming, of course, that the signal-to-noise ratio is the same in

the two cases. Thus, if S/N--2(A2At/No)=16, the probability of

confusing I(to) with I(to-I-At) is approximately 2.4X10 -3 (fig. 4.10).

The primary limitation to this procedure is in the amount of peak

power the transmitter is able to radiate. This limitation can be partially

overcome by sending the pulses periodically with a repetitive rate T which

is greater than the range of ambiguity, T>t2-t_. Then, the summation
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N--l N--_ f t0+_ t+iT

E I,(to) = E L. _ y(t) _ sin _c(t--t0) dt
i--O i--O J toti_

(6.8)

may be performed, increasing the effective integration time, and, hence,

the signal-to-noise ratio by a factor of N. In order to do this, the vehicle

being ranged must either be relatively stationary, or the relative motion
between the receiver and the vehicle during the interval between pulses

must be known and compensated for. This latter may be accomplished

by transmitting, in addition to the pulse, some unmodulated sinusoid of

amplitude _/2a at the frequency _c. This sinusoid can be tracked, for

example, with a phase-locked loop and the loop output used to control the

clock generating the pulses as shown in figure 6.3. Note that the tracked

sinusoid is also used to eliminate the high-frequency structure from the

pulse (cf. fig. 6.2).

V_'Am(t) sin coc(t-to)+n(t) [

X/2"cos co(t-t O) ]

,owpass Am(t)+n 1(t)
filter

Carrierfilter

This is done

integrals of equation (6.4) now become

I'(to) = _(t)y'(t) dt= y'(t) dt
J_o Jio

VCO --
FIGURE 6.3--Ranging signal demodulator.

primarily for convenience of instrumentation, since the

0 Otherwise

'1 to < t < to-P At

0 Otherwise

_(t) =.

where

y' (t) = Am(t) -t-n_(t),

m(t) =

(6.9)
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The continuum of integrals can now be replaced by one followed by a

sampler

/,o+_, /,oI'(_o) = y'(t) dr-- y'(t) dt

-- Y(_ +at) - Y(_o) (6.10)

Thus, only the single integration

t'
r(t') ffi y'(t) dt (6.11)

need be determined. The variance of I'(to) remains the same as that

of I(to), but the mean becomes

to-- At < }o< to-l-At

Otherwise (6.12)

and is thus the envelope of the expected value of the function I(t0).

This removal of the fine structure does not decrease the resolution, since

this information is still contained in the knowledge of the phase of the

signal sin we(t-- to). That is, the locally generated signal cos we(t-- to) can be
used to control the clock gating the sampler which samples the output of

the integrator. If the carrier phase and the pulse phase are coherent, it is

only necessary to sample at the instants of time t0 = 2_i/_c, where i = 1,

2, . .., since a pulse cannot begin at any other instant of time. Since the

phase of the carrier in general varies quite slowly, the bandwidth of the

loop tracking the signal %/2a cos _c(t-to) can be quite small and,

consequently, a is usually small compared with A, the amplitude of the

received pulse.

The primary disadvantage to this ranging procedure as observed is

that all the signal power must be sent in a relatively short period of time.

If the repetition rate is T and the pulse width is At, pulse energy is being

transmitted only (At�T)X 100 percent of the time. The peak power

radiated must be increased by a factor of T/At if the average is to be kept

the same as that which would be possible with continuous radiation.
But how can continuous radiation be used to achieve the desired range

resolution? One answer lies in the use of pseudo-random sequences.

PSEUDO-RANDOM SEQUENCES

To begin, we observe that the autocorrelation function of any wave

train, consisting of pulses whose amplitude while varying from pulse
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to pulse remains fixed for the constant pulse duration At, exhibits the
property that

,(r) = ,(nAt) I (n-H--)A_t--r 1

-{-_[(n+ 1)At] [_] nAt<r<(n+l)At (6.13)

We have already observed this behavior for the pulse train discussed in

"Spectra and Autocorrelation" in chapter 1. Note that it also applies to
the wave train considered in the previous section. The details of the

proof of this statement (6.13) are left as an exercise for the reader.

x(t)

a 1

FIGURE 6.4--A sequence of fixed amplitude pulses.

This observation allows us to consider the autocorrelation function

only at the points nAt, n=0, 1, . .., since we know that ¢(r) varies

linearly between these points and that ¢(r)=_(-r). In addition, a

pulse train of the type considered here may be represented simply by
the amplitude of the successive pulses. Thus, for example, the wave

train in figure 6.4 can be represented by the sequence al 12 aa . . . a_,
where a_ denotes the amplitude of the ith pulse. If the pulse train is

periodic with period T, as will be assumed here, aN+i = aj where N = T/At

is the number of pulses per period. Similarly, the autocorrelation func-

tion ¢(iAt) is given by

T_(iAt) = x(t)x(t+iht) dt

N

=At _ aiai+_
i-1

(6.14)

Then the autocorrelation function, too, can be readily determined from

the knowledge of the amplitudes of the pulses which comprise the wave
train in question.
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Consider now the periodic pulse train represented by the sequence 1,

1, --1 as shown in figure 6.5(a). The autocorrelation function is easily

determined
3

4(0) = At _ aj _= 3At

8

¢h(At) = At __, aiai+l = --At
i--I

$

_b(2At) = At _ aiai+_ = --At
i-I

and repeats with period T= 3At. The autocorre!ation function is illus-

trated in figure 6.5(b).

x(t)

5(8

(o)

(b)

FIGURE 6.5--(a) The periodic pulse train x(t); (b) its autocorrelation function _b(r).

The reader may verify that the sequence

1 1 1 --1 --1 1 --1

when repeated periodically has the autocorrelation function

4(0) = 7at

_(iAt) = --At i= 1, 2, 3, 4, 5, 6
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It is, in fact, possible to construct sequences whose periodic autocorrela-
tion function has the values

4,(0)=Nat

¢(iAt)= --at i=l, 2,..., N--1 (6.15)

for all values of N = 2"-- 1, where n = 1, 2,.... The sequences are called

pseudo-random or PR sequences because of the many properties which

they have in common with truly random two-level sequences.

The reader may have observed that any one of these sequences,

combined with all its periodic phase shifts, comprises a set of N wave-

forms whose maximum normalized cross-correlation is ¢h(iAt)/4_(O)

=- l/N, thereby nearly attaining the bound on the maximum cross-

correlation derived in the section entitled "Coding and Waveform

Selection" in chapter 4. An additional property of these sequences

is that they contain (NW 1)/2 pulses with the amplitude -t- 1 and (N- 1)/2

pulses with the amplitude -1. Thus the cross-correlation between

any phase shift of one of these sequences and the sequence consisting of

only - l's is
N

--At _ a_=--At
i--1

Consequently, the set of all periodic phase shifts of such a sequence

plus the sequence consisting of all --l's contains N-t-1 waveforms with

the maximum normalized cross-correlation equal to -1IN and, hence,

actually does attain the bound derived in "Coding and Waveform

Selection" in chapter 4. These sequences can be used to generate

waveforms in the manner described there. To illustrate, consider the

set of sequences
--1 --1 --1

1 1 --1

--1 1 1

1 --1 1

which represent the waveforms shown in figure 6.6.

Before returning to the ranging problem and the application of PR

sequences to it, let us observe another quite interesting feature of these

sequences: their ease of generation. The diagram of figure 6.7 represents

a set of three storage cells which retain a number, zero or one, until

clock pulse causes a shift. When the shift or clock pulse occurs, each

binary digit shifts to the right, and the modulo-two sum of the contents
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FIGURE 6.6--A set of waveforms achieving the bound In "Coding and Waveform Selection," chapter 4

of the last two cells is shifted into the first. By modulo-two sum,

we mean that

0 • 0 =0

0 • 1 --I

1 _B 0 =I

1 $ 1 --0

The reader may verify that the mechanism of figure 6.7 called a shift

register does indeed generate the complete PR sequence given earlier

of length seven regardless of which three binary digits are originally

placed in the cells, unless all three digits are zero. (To be consistent
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with the earlier notation, the output "0" of this device must be con-

verted to "- 1.") In general, a sequence of length N=2"-I may be

generated by an n-cell shift register.

FIGURE 6.7--A three-stage shift register.

RANGING WITH PSEUDO-RANDOM SEQUENCES

The application of pseudo-random sequences to ranging should be

fairly obvious from the discussion of the previous section. Since the

periodic autocorrelation of PR sequences assumes the values

cb(O) =NAt

_(iAt)=--At i=1, 2, ..., N--1

The complete autocorrelation function is shown in figure 6.8.

NAt

-At

" T

/
FIGURE 6.8--The PR-sequence autocorrelation function.
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Suppose the _(t) in equation (6.9) were this sequence rather than a

single pulse of duration At. Then, since the optimum detector forms

the integral

f,0+r dt f,0+rI'(_o) = rh(t)y'(t) = x(t--_o)y'(t) dt (6.16)
.1_o J _o

where y'(t)=A'x(t-to)-l-nz(t) and z(t) represents the PR sequence,
it follows that

f |0-t- T

E[I'(_o)]=A'J_ ° z(t-to)x(t-Zo) dt=A',_(to-_o)

E ,v+: I1
= -- A 'At Otherwise (6.17)

Note the similarity between this equation and equation (6.12). If

the average power radiated in the two cases is equated, then NA'=A;

and if N is large, as it must be for high-range resolution, then A'=A/N

is negligible compared with A and the two cases are essentially equivalent.

The PR-sequence technique has the definite advantage that the same

amount of power is always being radiated; the peak power is equal to

the average power.

In ranging space probes some distance from the earth, it is difficult

to reflect from them the amount of power necessary for high-resolution

ranging. However, the spacecraft can be equipped with a transponder

which receives the transmitted signal, tracks both the carrier and the

PR sequence, and regenerates them for retransmission back to earth.

This technique increases the amount of power received at the earth

tracking station by several orders of magnitude and is, in fact, the

technique most commonly used in conjunction with planetary missions.

It is well to observe at this point the close relationship between ranging

and synchronization. The latter necessitates the establishment of a

common time reference between the transmitter and the receiver, while

ranging involves the measurement of the signal transit time between

the two. Both, therefore, rely upon the determination of the frequency

and phase of a received signal. The frequency determination enables
the receiver clock to be controlled so that it runs at the same rate as

the transmitter clock; the phase measurement, obtained, for example,

by identifying the phase of a received PR sequence, establishes a common

point in time. The PR sequence used in the ranging case must be long

enough to resolve the distance ambiguity. That is, if the sequence

length corresponds to only 10 miles distance, it may be difficult to
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resolve the ambiguity as to whether the vehicle being ranged is, for

example, 200 010 miles away or 200 020 miles away. If, on the other

hand, its length corresponds to 100 000 miles, there would probably be

little difficulty in determining whether the vehicle is 200 010 or 300 010

miles away. Similarly, in the synchronization problem, the sequence

length must be great enough to resolve all time ambiguities not easily
resolved otherwise.

DOPPLER MEASUREMENTS

If the transmitter, transmitting signals with a carrier frequency of

f_ cps, and the receiver are moving away from each other with a relative

velocity of v meters/sec_ then in time T the distance between them has

increased by an amount vT while loT carrier cycles have been transmitted.

Designating the carrier wavelength by _ = c/f_ where c is the velocity of

light, we see that while f_T cycles are transmitted, the distance has

increased by vT/X cycles and, hence, only f_T-vT/_ cycles are received.

Thus, the apparent carrier frequency at the receiver is

The Doppler frequency Af, the difference between the transmitted fre-

quency and the received frequency, is therefore

Af =Vef_ (6.18)

If the transmitter and the receiver are moving toward each other with

a velocity v, the Doppler shift is, of course, the same in absolute magnitude

but represents an apparent increase rather than a decrease in the received

frequency.

In the case of the ranging of a space vehicle, in which the transmitted

signal is either reflected back to the earth or received and retransmitted

to the earth by the vehicle, the Doppler shift has been effected twice

and hence yields a shift of 2v/c cps at the earthbound receiver. By

measuring the received frequency, then, it is possible to measure the

velocity of the spacecraft toward or away from the earth. This can

be most easily accomplished by forming the product of the transmitted
signal carrier %/2 sin ¢_t with the received signal carrier %/2A sin [(_¢

=l=2rAf)t+_] obtaining

A cos (27rAft:l:_)--A cos [(2_o-4-2_Af)t+O] (6.19)
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After filtering out the double-frequency component, the frequency of

the remaining term A cos (2TAft=t=_) can be determined by passing it

through a bank of very narrow bandpass filters

H,(j2T]) = 1 fo+i_f < f < fo+ (i + l )$/

i=O, 1, . .., N--1 (6.20)

where f0 is the lowest and foWN$f is the highest expected Doppler

shift. The filter which exhibits the greatest average output power
then indicates the value of Af and, thereby, the component of the velocity

of the vehicle toward or away from the earth. If the sign of the fre-

quency shift is in doubt, it can also be dctermined by some additional

manipulation.
Since the carrier frequency is quite high, often on the order of 1000

Mc/sec, determining the Doppler frequency to the nearest cps, for

example, establishes the velocity of the vehicle to within less than 1 mph.

Doppler measurements, when combined with some initial information

concerning the vehicle position and velocity at some point in time and

with the knowledge of the trajectory which the vehicle must follow,

provide a complete record of the position of the vehicle. The limitation

to this approach in tracking a space vehicle lies in its dependence upon

the need for rather precise measurements of the initial position and

velocity data, upon the knowledge of the gravitational fields to which the

vehicle is subject, and upon the mathematical difficulties in using all of

this information to calculate the trajectories. Direct range measure-

T Declination _#_1

._ I._" II

...-" • Hour angle 'I

_,,,"_'_; /--Elevation ..r

/ Azimuth "-._' l •'/

_',_ _. l j s _

FIGURE 6.9--Two antenna coordinate systems.
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fiGURE 6.10--Antenna pickup.

ments as described in the previous sections are also subject to the latter

two limitations when it is desired to determine the trajectory, of the

vehicle. The Doppler measurements and the direct range measurements

do provide complementary information, however, and the combination of

these two measurements can often be used to improve the estimates of the

physical parameters involved in the calculation of these trajectories.

ANGLE MEASUREMENT

As mentioned earlier, part of the knowledge of the position of the

vehicle may depend upon the ability to measure the angular position of

the antenna pointed directly at it; at any rate, it is necessary to be able

to keep the antenna accurately directed at the vehicle in order to realize

its high gain. The coordinate system in which the antennas move de-

pends, of course, upon the type of mount used to support them. The two

most common coordinate systems, the azimuth-elevation (az-el) and the

hour angle-declination (HA-DEC) systems are illustrated in figure 6.9.

The solid line represents the direction in which the antenna is pointing.

The planes of motion of the antenna can be visualized by keeping one of

the coordinates fixed and moving the other of the same pair.
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Since parabolic antennas are highly directional, the coordinates can be

varied until the received signal power is a maximum. While it is possible

to point the antenna fairly precisely at the vehicle in this manner, it is

difficult to achieve the accuracy desired. Moreover, since the vehicle is

generally moving in the antenna coordinate system, it is desirable to

provide a method whereby the antenna can automatically be kept aimed

at the source. It is, therefore, useful to have some indication from the

received signal itself about the error in the antenna orientation, an indi-
cation which would enable this error to be decreased as well as to aid in

tracking the moving vehicle.

This indication can be provided quite simply by placing at the antenna

focus point not one, but four pickup points oriented as shown in figure

6.10. The signals from these four points are combined in three ways:

(1) the difference between the sum of the outputs of the two "north"

and that of the two "south" pickups, (2) the difference between the sum of

the outputs of the two "east" and that of the two "west" pickups are

formed, as well as (3) the sum of the outputs of all four pickups. If the

antenna is properly oriented, the signals (1) and (2) will be zero.

If the antenna is pointed too far north, more signal power will be re-

flected toward the north pickups than to the south, thereby generating an

error signal (1). This signal can be used to indicate the directional error

causing the antenna to be shifted south until there is no more error signal.

The same comments, of course, apply to orientation errors in the other
directions.



CHAPTER 7

Pioneer, Mariner, and the DSIF

IN THIS CONCLUDING CHAPTER we shall discuss the communication systems

which have actually been used in the Pioneer and Mariner programs, as

well as the ground-based equipment known as the DSIF.

THE PIONEER COMMUNICATIONS SYSTEM

In this section we briefly investigate the telecommunication system

used on the Pioneer IV lunar probe. Since this system is now obsolete

we shall not go into great detail, but simply outline the fundamental
concepts involved.

The Pioneer IV communications system consisted of three FM channels

which were frequency mu!tip!e×ed, the combined signal being used to
phase-modulate a carrier at 960 Mc/sec.

Although there were only three channels, a total of seven different data

sources were monitored through the use of time sharing and by a process

of superimposing several signals simultaneously on one subcarrier and

using the information redundancies to separate the data at the receiver.

The first channel consisted of a temperature measurement. Because it

was known that the temperature would not undergo any rapid changes,

several "event indicators" were superimposed upon this signal. The

events in question caused a jump in the temperature amplitude. These

jumps could not be due to the temperature; they were recognized as the

desired event indications and were subtracted out, leaving only the

temperature measurements. The several events to be designated in

this way were: (1) an indication of the initiation of a "despinning"

operation in which weights were extended to slow down the spinning

of the probe; (2) a step voltage change indicating that the optical devices

had received light due to the closeness to the moon; and (3) a series of

steps (positive and negative), indicating that the optical cells were

periodically seeing light and then darkness in accordance with the spin

rate of the vehicle as it passed by the moon.

The second channel transmitted the integrated output of a Geiger

counter. After the probe had passed through the Van Allen belts, and

there was no more information to be measured, the input to this channel

was switched to measure the output of the power amplifier of the trans-
mitter.

129
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Channel 3 was a method for transmitting the number of counts from

a second Geiger-Mueller tube. Three signals were superimposed as

shown in figure 7.1. The highest frequency output from the counter

switched every 29 counts, the next every 21_ counts, and the last every
217 counts. These three signals were added as shown and passed through

a low-pass filter. As the counting rate increased, the high-frequency

component would be filtered out and, hence, the number of counts would

be scaled by a factor of 218 rather than 2 9. As the number of counts per

second increased even further, the middle frequency would also be filtered
and the scale factor would be 217 . The most significant digits of the

count were thereby always transmitted, while the bandwidth necessary
to do this was kept relatively constant. This is an example of a self-

adaptive data-processing system.
The data signals from the three channels were applied to the input of

three VCO's, each centered at a different frequency to keep the outputs

from overlapping in frequency. The signals were actually filtered first,

effectively changing the square waves to exponentially increasing and

decreasing waveforms as shown in figure 7.2. This filtering was done to

prevent the VCO output signal from changing frequency too rapidly so

that it could be coherently demodulated with a phase-locked loop. If

the frequency input to the demodulating loop were to change too abruptly,

Geiger counter

output

r
I-2,,
I _2,,

J'lnnnnn nnnnnr ...... qnr
Output a:JUUUUUUU UUUU "'" UU

Output b:

Output c:

Sum

t t- L

I-in _R-qN fln
UU " UUUL

Ul_ "°"

fiGURE 7.1--Channel 3 data signal.



• PIONEER, MARINER_ AND DSIF 131

(o)

S
(M

FIGURE 7.2_Data signal conditioning. (a) Prefiltered data slgnal; (b) filtered data signah

the loop would go out of lock, and the information would be lost

until it could be again locked up. The three VCO outputs were added

and used to phase-modulate the carrier.

The total radiated power was 164 mW, of which approximately 100

mW were in the carrier--14 mW each in channels 1 and 2, and 36 mW in

channel 3. The probe antenna was essentially a dipole antenna with a

gain of 2.5 dB.

The receiver antenna had an 85-foot diameter with a 40-dB gain. The

receiver effective noise temperature was 1630 ° K. Demodulation

was accomplished with phase-locked loops as shown in figure 7.3. The

loop-noise bandwidths were carrier, 20 cps; channel 1, 4 cps; channel 2,

4 cps; channel 3, 8 cps.

Note that the carrier demodulation is accomplished by simply tracking

the unmodulated carrier and taking as the partially demodulated signal

the product of the tracked carrier with the received signal. This achieves

the desired result only because the carrier is phase modulated with a

small index of modulation. That is, let xl(t)+x:(t)+x3(t)=_(t), where

x_(t) is the frequency-modulated signal from the ith channel. Then

the output of the phase modulator is

y(t) = "v_A sin [,_ot+Z_a,_(t)l

= _/'2A cos [A0_(t)] sin _otA-v_A sin [AO¢(t)] cos _t (7.1)
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:_'_JChannel 11 Channel 1 output

Channel 2_ Channel 2 output

-_Channel 3] Channel 3 output

Signal
carrier

_ __)_ ._ Carrier_tracking L

FIGURE 7.3--Pioneer receiver demodulator.

If AO is small enough, then

cos [,_o4,(t)]_1

sin [hO_(t)] _ AOq_(t)
and

y(t)_v_A sin toctA-v'2AAO_(t) cos _0_t (7.2)

The carrier loop tracks the unmodulated component at the frequency
fc=¢oc/27r. The output of the carrier loop VCO is therefore approxi-

mately V_ cos _oct, and, neglecting the double frequency components,

the product of this with the signal yields

A AOC(t) = A AO[xl (t) + x_( t) +x3(t)] (7.3)

which is the desired frequency-multiplexed frequency-modulated signal.
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Each of the three loops is designed to track only one of these three

" signals; the other two are eliminated by the tracking filter. That
the FM signal is then demodulated follows from the discussion in

"Demodulation of Angle Modulated Signals" in chapter 3.

The Pioneer IV telecommunications system was then essentially

a frequency-multiplexed FM system which was coherently demodulated
using phase-locked loops. No direct effort was made to remove the

redundancy from the data signals, though, clearly, all three channels

produced very redundant information. Some effort was expended, how-

ever, to make use of the signal redundancy by superimposing several

signals. This was, in some sense, a method of data compaction. In

addition, the third channel did incorporate a simple but effective method
of adapting to the data.

THE MARINER II COMMUNICATIONS SYSTEM

The Mariner II telemetry system provides an interesting contrast
to the Pioneer system. First, it was designed for a communication

distance of up to 40 million miles as opposed to the 1__ to X-million-mile

required range of the lunar probe. In addition, many more data sources

were on board the spacecraft. These data sources can be divided into

engineering and scientific sources. The engineering measurements

included: measurements of the battery voltage; the solar-panel voltage;

the earth-sensor temperature; roll, pitch, and yaw gyros; sun sensors;

propellant tank pressure and temperature; thermal-shield temperatures,
etc. Some of the scientific experiments which had to be monitored

included a microwave radiometer experiment, an infrared radiometer

experiment, a magnetometer experiment, charged particle flux experi-

ments, solar plasma experiments, and a micrometeorite experiment.

To complicate the situation were the following two factors: (1) not

all measurements were needed at all times; and (2) the telemetry capacity

obviously decreased as the distance from the earth increased. It clearly

would not be efficient to operate as if the worst condition were in effect;
that is, as if the spacecraft were at its maximum design distance from

the earth and all measurements were to be transmitted. Fortunately,

many of the engineering measurements are most significant during the

early powered stages of the flight and during the midcourse maneuver,

while the telemetry capacity is relatively large and the scientific measure-
ments are not of interest. The scientific measurements become most

important during the fairly brief period of planetary encounter when

the spacecraft has approached its maximum design distance from the

earth. For these reasons, the telemetry system was designed to operate

in three successive modes: the launch mode, the cruise mode (after

earth acquisition), and the planetary encounter mode (during which
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the scientific data were gathered and transmitted). Switching from

one mode to another was effected by a command from the ground.'

Each telemetry mode had associated with it a certain subset of the
total measurements which were to be monitored.

The various data sources were time multiplexed, each of the signals

being observed continually for a fixed length of time Tw. A clock

generating Rw = 1/Tw pulses per second switched the different measure-
ments into the output. Since some measurements needed to be observed

more frequently than others, a process of commutation evolved so that

it was possible to sample some sources every 10th time, some every

100th time, and some only every 1000th time. The technique for

accomplishing this is indicated in figure 7.4. The switches marked S
indicate some of the various possible mode switches. The scientific

data were transmitted in the encounter mode. The 10-input, 1-output

boxes indicate commutators which read the input from the ith switch

until it receives a pulse and then switches to the i+lst switch. After

it reaches the 10th position, it starts over again at the 1st. At the

output the information is sampled once every Tw seconds and converted

to binary PCM form. Each sample is represented by words of seven
bits each. The bit clock therefore generates RB = 7Rw pulses per second;

the bit interval is TB = 1/RB seconds.

The input to the modulator is a sequence of PCM binary bits. At
the output of the modulator a 1 is represented by the signal xx(t) = v_A

sin wj and a zero by X2(t)=- _¢/2A sin _,t. Since the time signals

represent equal power, and since

fro xl(t)x_(t) dt -- - 1 (7.4)
pl_ = [froxx_(t) dt fro x2_(t) dt] 1/2

this corresponds to a two-level biorthogonal code. The associated

bit-error probabilities are as shown in figure 4.11, for m--logs M= 1.

A convenient alternative way of representing the modulator output

is by the waveform

_/'2A cos [_o,t+f/2m(t)] (7.5)

where m(t) = +1 or - 1 for nTn <t< (n+I)TB depending upon whether
the bit is a 1 or a zero. This is therefore an example of discrete phase-

shift keying (PSK).

This PSK signal is, in turn, used to phase-modulate the 960-Mc/sec
carrier. The same carrier demodulators are used that were described

in "The Pioneer Communications System" in this chapter. Again,

because of the nonlinear aspects of coherent PM demodulation, it is
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S

required that about 50 percent of the power be left in the carrier; that

is, that the modulation index be kept relatively small.

In practice, instead of the signal in the expression (7.5), the signal

_v/2A cos [o_,td-Om(t)] (7.6)

is used where 0 is somewhat less than _/2. This signal is used because

coherent demodulation demands knowledge of the phase and frequency
of the unmodulated subcarrier and

_¢f2A cos [o_,t+Om(t)]

---_f2A cos [0m(t)] cos oJ,t--Vr2A sin [_m(t)] sin w,t

= _,/2A cos 0 cos w,t-- _/2Am(t) sin 0 sin ¢,t

=V_A cos O eos _,t-t-_/_A sin O cos [o_,t÷2 m(t)] (7.7)
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Thus, the signal V_A cos [_st+Om(t)] may be considered to be the,

sum of an unmodulated subcarrier of amplitude v_A cos 0 and a

±90 ° phase-modulated sinusoid with amplitude v_A sin 0. The

subcarrier is demodulated by tracking the unmodulated portion with a

phase-locked loop and taking the product of the total signal with the

retrieved pure subcarrier, as shown in figure 7.5. The product

V_ sin _,t[%/2A cos 0 cos _,t-v_Am(t) sin 0 sin _.t]

becomes, after filtering out the double frequency terms

-Am(t) sin 0

which, except for the insignificant (constant) change of sign and gain, is

the original data signal.

Note that the optimum demodulation scheme as discussed in chapter 4

is used to convert the signal -Am(t) sin 0 to a sequence of binary bits.

This, of course, demands the knowledge of the instants of time when one

bit ends and the next one begins. This bit synchronization as well as

Received

signal

Modulatio

L_ (.+1)'/" J IQuantizer: /

I _lif>O
--_ dt r--_loutput is 1_ --_

/I if <0 J-.
nT |loutput is OI Bd:t:Y

t signal
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_._[ Subcarrier ___

tracking filter

Carrier tracking _j

filter

FIGURE 7.S--The Mariner U telemetry demodulator.
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word and frame synchronization must be provided as discussed in "Syn-
chronization" in chapter 4. The technique by which this information

was obtained in the Mariner II system is entirely analogous to the PR

ranging system discussed in "Ranging With Pseudo-Random Sequences"
in chapter 6. As pointed out there, ranging and synchronization are

strongly related problems; in this case essentially the same solution was

used for synchronization as is often used for ranging. A PR sequence con-
taining 63 bits with period TB/9 was transmitted. Since 63(TB/9) = 7TB

= Tw, the period of the PR sequence was equal to the word interval.

By identifying a particular phase of the PR sequence with the beginning

of a word, word synchronization, and afortiori, bit synchronization, is
obtained as soon as the phase of the PR sequence is detected. The PR-

bit period was chosen to be TB/9 rather than Ts in order to increase the

resolution; that is, in order to decrease the region of uncertainty At (cf.
"Ranging With Pseudo-Random Sequences" in ch. 6).

Frame synchronization, the knowledge of that instant of time in

which the complete cycle of data observations begins again, was provided

by making the first word of each frame consist of l's only and prohibiting

the al!-I's word from occurring elsewhere. (If the data signal were truly

all l's, it would be replaced by the signal i i i I 1 1 0.) Consequently,

the occurrence of the all-l's word indicated the beginning of a new frame.

In summary, then, the Mariner II telecommunications system might

be classified as a PCM/PSK/PM system. The data are time multiplexed,

sampled, and converted to binary PCM..The binary bits are used to
PSK-modulate a subcarrier which in turn phase-modulates a carrier.

The purpose of a subcarrier is to move the data spectrum away from the
zero frequency range so that, when this signal is used to modulate the

carrier, the receiver carrier loop is able to track the carrier without inter-

ference from the modulation. Approximately 50 percent of the total

power must be left in the carrier. This is not necessarily a limitation,

however, since unmodulated carrier power is essential both for locking up

the receiver loop and for tracking the vehicle. The Mariner II transmit-

ting antenna was parabolic with a 4-foot diameter. The radiated power

was 3 watts; the telemetry rate was 331_ bits/sec in the launch mode and

81_ bits/sec in the other two modes of operation.

The command link (ground to spacecraft) was entirely similar to the
telecommunications link. Several important differences should be

mentioned, however. First, while it is important to have reliable

communication between the spacecraft and ground, it is imperative to
have extremely high reliability in the other direction. Commands from

the earth are used to alter the mode of operation and even the trajectory

of the spacecraft. An error in the reception of a command could easily

defeat the purpose of the entire mission. Although much more power

(up to 10 kW) is radiated from the ground than from the spacecraft, the
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ground-to-vehicle link is not significantly better than the vehicle-to-,

ground link. This lack of improvement results from the vehicle-receiver

effective noise temperature (about 5800 ° K) being considerably higher

than that of the ground receiver. In addition, the vehicle-receiver

antenna gain is less than its transmitter antenna gain. This latter factor

is a result of the requirement that commands must be received regardless
of the attitude of the vehicle so that the receiver antenna must be omni-

directional and therefore ideally has a gain of 0 dB. Should something go

wrong with the vehicle attitude control, for example, the rest of the mis-

sion might be a total failure were it not possible to communicate with the

probe regardless of its orientation. The reliability of the ground-to-

vehicle communication is increased, however, by transmitting the data at

a very slow bit rate. As seen in figure 4.11, the error probability is a

rapidly decreasing function of the parameter STB/No, where TB is the

time spent per bit. Since relatively few commands need to be trans-

mitted, TB can be made quite long (1 second, in this case), and the bit-

error probability, satisfactorily small.

THE DEEP SPACE INSTRUMENTATION FACILITY

The Deep Space Instrumentation Facility (DSIF) consists of three

transmitting-receiving sites--Goldstone, Calif.; Woomera, Australia;

and Johannesburg, South Africa. Since the facilities at the three sites

are comparable, only the station at Goldstone is discussed here.

The Goldstone station, as now equipped, operates at both L-band

(about 950 Mc/sec) and S-band (about 2300 Mc/sec). Most systems

are now designed to operate in the S-band region due to the increased

antenna gain there (cf. "Antenna Gain" in ch. 2). The receiving and

transmitting antennas are both 85-foot paraboloids (one with an az-el

mount, the other with a HA-DEC mount), having an effective area of

about 67 percent of their actual area. They are able to track to within an

angular accuracy of approximately 0.02 °. The receiver amplifier is a

helium-cooled ruby maser and the overall system noise temperature is

about 33 ° K. (This may be broken down roughly as 10 ° K sky or back-

ground noise, 9 ° K maser noise, and 14 ° K noise due to various system

losses.) The maser gain is about 40 dB over a bandwidth of 12 megacycles.

The transmitter is capable of delivering up to 100 kilowatts of continuous

power.

THE DIRECTION OF _UTURE SYSTEMS

One improvement at the Goldstone DSIF which is already in progress
is the construction of a 210-foot parabolic antenna which will still have

tolerances satisfactory for S-band operation. Some consideration is

being given to the further increase of power, perhaps by as much as a
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factor of 5, but this procedure clearly has its limitations. Further
significant decreases in the receiver noise temperature below the present

33 ° K are not anticipated.

So far as the communication system itself is concerned, the most

probable direction will be toward the use of multilevel orthogonal or

biorthogonal codes. As seen in figures 4.10 and 4.11, the advantages of

going to higher level codes can be significant. The factors limiting their

use up to now have been the inherently more complex synchronization
problem and the somewhat increased equipment complexity. Neither of

these problems now seems to be severe.

Some improvement in the now quite limited data compaction processes

is also likely to be incorporated into future systems. The onboard equip-
ment limitation is still not insignificant in this case, however, and will

continue to restrict the improvements which can be made in this direct.ion.
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